
Preference Recoverability from Inconsistent Choices

Online Appendix

Cristián Ugarte

1 The Varian Index

1.1 Definition

The Varian Index (Varian, 1990) follows the idea of v-rationalization (Definition 7 in the

main body of the paper).1 Starting from a vector v ∈ [0, 1]N we define v-revealed preferences

as follows:

Definition 1. Given vector v ∈ [0, 1]N , and two choices xi, xj ,

- xi is v-directly revealed preferred to xj , denoted xi %D
v xj if (1) xi = xj , or (2) pixj ≤ vi;

- xi is v-directly revealed strictly preferred to xj , denoted xi �D
v xj if pixj < vi;

- xi is v-revealed preferred to xj , denoted xi %R
v xj if there is a sequence of choices (xm`)`∈[L]

such that xi %D
v xm1 %D

v . . . %D
v xmL %D

v xj ; and

- xi is v-revealed strictly preferred to xj , denoted xi �R
v xj , if there are choices xm, xm

′

such that xi %R
v xm �D

v xm
′
%R

v xj .

Similarly, we can define a relaxed version of GARP

Definition 2. For a vector v ∈ [0, 1]N the choice data D satisfies the Generalized Axiom of

Revealed Preferences given v (GARPv) if for every pair of choices xi, xj , if xi %R
v xj then

xj 6�D
v xi.

Afriat (1973) shows that when v = e1 for e ∈ [0, 1], GARPv is equivalent to the data

being v-rationalizable, and (as his original theorem) the preference relation v-rationalizing

1This section follows the exposition presented by Halevy et al. (2018).
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the data can always be chosen to be continuous and convex. The general equivalence

between GARPv and v-rationalization (for any vector v ∈ [0, 1]N ) is shown in Halevy et al.

(2018).2 As with the result in Afriat (1973), in this general case, it is also without loss of

generality to choose a continuous and convex preference relation rationalizing the data.

Theorem (Halevy et al. (2018), Theorem 1). A choice data is v-rationalizable by a con-

tinuous and monotone preference relation if, and only if, it satisfies GARPv.

When v = 1, the previous result is equivalent to the original version of the Afriat

Theorem. Varian (1990) proposes to use as vector v the one that minimizes the distance

with 1 (in some metric) among the ones that satisfy GARP. In general, the measure is

defined as follows:

Definition 3. Let f : [0, 1]N → [0, 1] be a continuous and weakly decreasing function

satisfying f(0) = 1 and f(1) = 0. The Varian efficiency Index is

IV (D) = inf
{v∈[0,1]N :D satisfies GARPv}

f(v) . (1)

Take a vector v ∈ [0, 1]N such that D satisfies GARPv. We know that a preference that

v-rationalizes the data will agree with all the v-revealed preferences. Starting from this

point, we can easily characterize the out-of-sample accuracy test. For this, we define the

tuple of mistakes as M =
(
%D \ %D

v ,�D \ �D
v

)
, use the vector v as the vM vector, and

apply Proposition 6 in the main body of the paper.

1.2 Difference between the MM and the Varian estimators

Figure 1 shows choice data with three different observations. The directly revealed strict

preference relations are

x1 �D x2, x2 �D x1, x2 �D x3, and x3 �D x1.

The set of preferences recovered using the Varian Index and the MM Index may differ:

The Varian Index (as shown in the picture) interprets as “correct” the revealed preferences

x1 �D x2 and x3 �D x1; hence any recovered preference relation %V will satisfy x3 �V

x1 �V x2. On the other hand, the solution to the MM Index interprets as “correct” the

2Although the equivalence between GARPv and v-rationalizability appears to be the primary motivation
in Varian (1990), neither he nor any further work following it proved such a result before Halevy et al.
(2018).
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Figure 1: Example of choice data where the preferences recovered using the MM and
Varian indices differ. Dotted blue line shows how the Varian Index shrinks the budget set

of the second observation.

preferences x2 �D x1, x2 �D x3, and x3 �D x1; hence any recovered preference %M will

satisfy x2 �M x3 �M x1.

1.3 Computation Details

We compute the Varian Index using the mixed-integer linear programming approach de-

veloped by Demuynck and Rehbeck (2023). For the objective function f(v), we use the

(normalized) distance between the vector v and a vector of ones in the taxicab geometry:

f(v) =
1

N

∑
i∈[N ]

(1− vi) (2)

We choose the objective function (2) over the most popular normalized Euclidean dis-

tance between v and a vector of ones for practical reasons. Although both problems are

known to be NP-hard, in practice, we find that the computation of the Varian Index is

superior with a linear objective than with a quadratic one, both in terms of computation

time and success rate. Table 1 presents summary statistics of computations under both

objective functions when the time limit to compute the index for each subject is set to one

hour. Since the subjects for whom the Varian Index cannot be computed with Euclidean

distance are likely to present more violations of GARP, using this objective would bias our

estimation, as we would only include a non-random portion of our sample. Hence, we use

the Varian index using the taxicab distance to include all the subjects in the sample.
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Table 1: Varian index - Summary Statistics

success Time

Sample # Sub Objective rate average 95th percentile

2D

Risk - General 951
linear 100% 6.11 6.81

quadratic 100% 15.37 24.05

Risk - Students 762
linear 100% 24.92 30.08

quadratic 88.32% 466.00 1323.51

Social - General 1549
linear 100% 27.86 32.89

quadratic 79.72% 549.36 1754.91

Social - Students 709
linear 100% 25.20 28.75

quadratic 90.46% 450.69 1349.14

ALL 3971
linear 100% 21.61 31.06

quadratic 88.14% 388.09 1360.12

3D

Risk 141
linear 100% 24.35 27.62

quadratic 85.82% 570.45 2268.58

Ambiguity 134
linear 100% 31.26 35.27

quadratic 90.30% 539.32 1994.74

Social 45
linear 100% 25.34 29.23

quadratic 82.22% 225.88 907.23

ALL 320
linear 100% 27.38 33.87

quadratic 87.19% 508.96 2014.50

Summary Statistics for Varian Index succes rate and computation time under different objective functions.

D is number of dimensions, # Sub is number of subjects who fail GARP. Success rate is computed over

number of subjects who fail GARP. Time limit to compute the index for each subject is set to one hour.

4



2 Comparison of the MM and Varian Estimators

2.1 Computational complexity and computation time

Computing both ∆(D) and the Varian Index are NP-Hard problems. To see that ∆(D)

is NP-hard, note that by Proposition 2 its computation reduces to solving a Minimum

Feedback Arc Set problem, which is one of the 21 original NP-complete problems in Karp

(1972). Smeulders et al. (2014) show that computing the Varian Index is NP-Hard. We

solve the MFAS problem necessary to compute the ∆(D) and the MM estimator using

the methodology developed by Baharev et al. (2021), which implementation is available in

Baharev (2021). The Varian index is computed using the method developed by Demuynck

and Rehbeck (2023).

Figure 2 shows the cumulative distribution of computation time for both ∆(D) and the

Varian Index. For all sub-samples, the computation of ∆(D) is significantly faster than the

one of the Varian Index, both in average and for the subjects who present a higher index

level (i.e., a lower level of rationality).

2.2 Ordering and out-of-sample accuracy

Figure 3 shows the ordering of subjects according to ∆(D) and the Varian Index per sub-

sample, and Table 2 presents the out-of-sample accuracy and completeness for both indices

using five choices to test the data instead of ten. In both cases, the results are similar to

the ones presented in the main body of the paper.
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Figure 2: Cumulative distribution of computation time for M(D) and Varian Index.
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Figure 3: Ordering of subjects according to M(D) and Varian Index. Linear regression in
blue; gray dotted line is 45◦ line.
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Table 2: Out-of-sample prediction (Test: 5 choices)

Accuracy Completeness

Sample # Sub MM Varian Diff MM Varian Diff

2D

Risk - General 951
0.721 0.725 -0.004 0.316 0.336 -0.020

(0.007) (0.007) (0.003) (0.018) (0.017) (0.007)

Risk - Students 762
0.805 0.776 0.029 0.618 0.604 0.014

(0.008) (0.009) (0.004) (0.014) (0.014) (0.006)

Social - General 1549
0.689 0.690 -0.001 0.422 0.430 -0.007

(0.006) (0.006) (0.003) (0.012) (0.011) (0.005)

Social - Students 709
0.768 0.780 -0.011 0.565 0.597 -0.032

(0.008) (0.008) (0.003) (0.017) (0.015) (0.007)

ALL 3971
0.733 0.731 0.002 0.460 0.470 -0.011

(0.004) (0.004) (0.002) (0.008) (0.007) (0.003)

3D

Risk 141
0.794 0.733 0.061 0.581 0.529 0.052

(0.018) (0.022) (0.010) (0.036) (0.035) (0.015)

Ambiguity 134
0.797 0.737 0.060 0.618 0.551 0.067

(0.017) (0.020) (0.012) (0.029) (0.030) (0.019)

Social 45
0.640 0.569 0.071 0.403 0.375 0.029

(0.034) (0.041) (0.021) (0.055) (0.052) (0.025)

ALL 320
0.774 0.712 0.062 0.572 0.517 0.055

(0.012) (0.014) (0.007) (0.022) (0.021) (0.011)

Out-of-sample average accuracy and completeness for each sub-sample, including only subjects who fail

GARP. standard errors in parenthesis. Diff is difference between MM Varian estimators, D is number of

dimensions, and # Sub. is number of subjects. Test data is 5 observations, and the remaining are used for

training.
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3 Additional Proofs

3.1 Remarks

Proof of Remark 1. For necessity suppose xi �D xj , and take y satisfying gi(y) = 1 and

y � xj . Since � is continuous, for ε small enough we have y − ε1 � xj , which implies

y − ε1 � xj , and gi(y − ε1) < 1 holds as gi is increasing.

For sufficiency suppose there is y such that gi(y) < 1 and y�xj . Let α = maxk∈[K] x
i
k−

yk. Then y+2α1 > xi, which as gi is increasing implies gi(y+2α1) > 1. As gi is continuous

and gi(y) < 1 there is β ∈ (0, 2α) such that gi(y + β1) = 1, and as � extends ≥, y � xj

implies y + β1 � xj . Therefore xi �D xj .

Proof of Remark 2. As D satisfies GARPM by Theorem 3 there is a continuous and mono-

tone preference relation %∈ R(M). As % is continuous by Debreu (1954) Theorem it has a

continuous utility representation u : RK
+ → R. As u is continuous and {x : g(x) ≤ 1} is com-

pact, by Weierstrass Theorem u attains a maximum value x? on the budget set generated

by g. Therefore x? ∈ CM(g).

3.2 Proof of Proposition 6

Proof of Proposition 6. To show necessity suppose x ∈ CM(g). This implies that there

is a continuous and �-monotone preference relation % that vM rationalizes the data and

discards onlyM, and for which x % y whenever g(y) ≤ 1. Towards a contradiction suppose

either (6), (7), or (8) fails.

- If (6) x is clearly not optimal as there is y ∈ B such that y � x (as % is �-monotone).

- If (7) fails then there is i ∈ [N ] such that g∼m
R

M
gi and either xi � x or there is y such

that gi(y) = vi and y� x. As g∼m
R

M
gi there is a chosen bundle xj such that g∼m

D

M
gj and

xi %R
M xj . Since g∼m

D

M
gj there is y such that g(y) = 1 and y � xj , which as x ∈ CM(g)

implies that there is an �-monotonic preference relation %∈ R(M) for which x % y, so

�-monotonocity and transitivity imply x % xj . As % discards onlyM transitivity implies

xj % xi, therefore x % xi. There are two possible cases: (i) xi � x, and (ii) there is y

such that gi(y) = vMi and y � x. In (i), �-monotonicity implies xi � x. In (ii), as % vM

rationalizes the data we have xi % y, and �-monotonicity implies y � x. In both cases

we found a contradiction with x % xi.

- If (8) fails then there is i ∈ [N ] such that g mR
M gi and xi � x or there is y such that

gi(y) = 1 and y � x. As g mR
M gi we have one of the two following cases: (i) there is

a bundle y and a chosen bundle xj such that g(y) = 1, y � xj , and xj %R
M xi, or (ii)
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there is a bundle y and a chosen bundle xj such that g(y) = 1, y � xj , and xj �R
M xi.

In (i), as x ∈ CM(g) there is a preference relation %∈ R(M) such that x % y. Then

�-monotonicity implies y � xj , and by transitivity x � xj . As % discards only M we

have that xj % xi, thus x � xi. In (ii), as x ∈ CM(g) there is a preference relation

%∈ R(M) such that x % y. Then �-monotonicity implies y % xj , and by transitivity

x % xj . As % discards only M we have that xj � xi, thus x � xi. In both cases we

conclude x � xi.
As (8) fails one of the following holds. (a) xi � x, or (b) there is y such that gi(y) = vMi
and y � x. In (a) �-monotonicity implies xi % x. In (b), as % vM rationalizes the data

we have xi % y, and �-monotonicity implies y % x. From transitivity we have xi % x. In

both cases we found a contradiction with x � xi.

For sufficiency suppose equations (6), (7), and (8) hold. Let gN+1 = g, xN+1 = x, and

define the extended data De = (pi, xi)i∈[N+1] ((6) assures gN+1(xN+1) = 1). Also define the

extended couple of mistakes Me = (Mw
e ,Ms

e) by

Mw
e =Mw ⋃ {(xi, xN+1) ∈%D: i ≤ N , xi 6�xN+1, and 6 ∃ y s.t. gi(y) = vMi and y � xN+1}
Ms

e =Ms ⋃ {(xi, xN+1) ∈�D: i ≤ N , xi 6�xN+1, and 6 ∃ y s.t. gi(y) = vMi and y � xN+1}

Then Mw
e and Ms

e have mistakes of the form (xi, xj) with i, j ∈ [N ] if and only if (xi, xj)

are also in Mw and Ms, respectively. Furthermore, we have xi %D
Me

xN+1 if and only if

either xi�xN+1 or there is y such that gi(y) = vMi and y�xN+1; and xi �D
Me

xN+1 if and

only if either xi � xN+1 or there is y such that gi(y) = vMi and y � xN+1.3

If De satisfies GARPMe then for anyMe vector vMe there is a preference relation that

vMe-rationalizes the data and discards only Me. In particular this is true for vMe defined

as

vMe
i =

vMi if i ∈ [N ]

1 if i = N + 1 .

Given how Me is constructed, if % vMe-rationalizes De and discards only Me, then it

3For sufficiency in the case of %D
Me suppose either xi � xN+1 or there is y such that gi(y) = vMi and

y � xN+1. If xi � xN+1 then xi %D xN+1 and (xi, xN+1) /∈ Mw
e , therefore xi %D

Me
xN+1. If there is y such

that gi(y) = vMi and y � xN+1, then there is ε ≥ 0 for which y′ = y + ε1 is such that gi(y′) = 1. As �
extends ≥ we have y′ � y, which by transitivity implies y′ � xN+1, so xi %D xN+1. As (xi, xN+1) /∈Mw

e we
have xi %D

Me
xN+1.

For necessity in the case of %D
Me suppose xi %D

Me
xN+1. This is, xi %D xN+1 and (xi, xN+1) /∈ Mw

e .
As xi %D xN+1 either xi � xN+1 or there is y′ such that gi(y′) = 1 and y′ � xN+1. If xi � xN+1 then the
condition holds. If there is y′ such that gi(y′) = 1 and y′ � xN+1, towards a contradiction suppose there
is no y such that gi(y) = vMi and y � xN+1. Then as xi 6�xN+1 we have that (xi, xN+1) ∈ Mw

e , which
contradicts xi %D

Me
xN+1.

The case for �D
Me

is analogous.
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also vM-rationalizes D and discards only M, i.e., %∈ R(M). And as vMe
N+1 = 1 then

xN+1 % y whenever gN+1(y) ≤ 1, i.e., xN+1 ∈ CM(pN+1). Therefore a sufficient condition

for x ∈ CM(p) is for De to satisfy GARPMe .

Towards a contradiction suppose De fails GARPMe . Then there is a chain (xm`)`∈[L]

(L ≥ 2) such that xm` %D
Me

xm`+1 for all ` ∈ [L − 1] and xmL �D
Me

xm1 . As D satisfies

GARPM there has to be an index `′ ∈ [L] such that m`′ = N + 1. Since (6) assures

xN+1 6�D xN+1 it is without loss of generality to suppose such `′ is unique.4 If `′ = 1

then pN+1
∼m

R

M
pmL . As xmL �D

Me
xN+1 we have either xmL � xN+1 or there is y such

that gmL(y) = vMmL
and y � xN+1. This contradicts (7). If `′ > 1 then pN+1 m pm`′−1 . As

xm`′−1 %D
Me

xN+1 we have either xm`′−1 �xN+1 or there is y such that gi(y) = 1 and y�x.

This contradicts (8). We conclude that De satisfies GARPMe and x ∈ CM(p).

4If there is A ⊂ [L] such that |A| ≥ 2 and m`′ = N + 1 for all `′ ∈ A we can construct another sequence
(xms)s∈[S] such that (1) xms %D

Me
xms+1 for all s ∈ [S − 1], (2) xmS �D

Me
xm1 , and (3) there is a unique

s′ ∈ [S] such that ms = N + 1. Define ` = min{` : ` ∈ A} and ` = max{` : ` ∈ A∩ [L− 1]}. If L /∈ A remove
from the sequence (xm`)`∈[L] all the elements for which ` > ` and ` ≤ `. If L ∈ A remove from the sequence

all the elements for which ` ≤ `. The resulting sequence satisfies all the desired properties.
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