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Abstract

Economic research usually endows consumers with a strictly concave utility func-
tion. When choices are rationalizable, this assumption can be tested by the Strong
Axiom of Revealed Preferences, SARP, as if they fail such a test, the convex-
ity of the utility is not strict. We extend this test to non-rationalizable choices
using partial efficiency, the most popular method to recover preferences. Under
partial efficiency, a strictly convex utility cannot be tested. Hence, the existence
of a strictly concave utility is falsified if, and only if, choices are rationalizable
but fail SARP, which we do not observe in laboratory data. From an empirical
standpoint, our results suggest that assuming a strictly concave utility does not
carry a cost.
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1 Introduction

One of the most widespread assumptions in economic research is that agents’ behavior

can be described using a strictly concave utility function. The main implication of this

assumption is that the generated demand is a function instead of a correspondence.

This assumption simplifies the analysis in both theoretical and empirical research.

Most results in general equilibrium, applied game theory, and mechanism and infor-

mation design rely upon this assumption to keep the models tractable. Empirically,

demand estimation typically proceeds by adding an error term to a parametric demand

function.

In this paper, we study the possibility of empirically testing the strict concavity of

the utility function. We extend the classical revealed preference analysis to the case

when the agent’s choices are an imperfect implementation of her preferences, and,

therefore, fail the Generalized Axiom of Revealed Preferences (GARP). In other words,

we study the possibility of using an agent’s (possibly inconsistent) observed choices

to falsify the strict concavity of her underlying utility. The main result of this paper

shows that if the agent fails GARP, it is impossible to falsify the strict concavity of

the utility function.

The Afriat Theorem (Afriat, 1967; Varian, 1982) teaches us that a consumer’s

choice data can be thought of as perfectly driven by a utility function if and only if

it satisfies GARP. However, the utility function recovered with Afriat’s method is not

strictly concave, generating a demand correspondence instead of a function. Matzkin

and Richter (1991) show that a strictly concave utility exists if, and only if, choices

satisfy Houthakker’s (1950) Strong Axiom of Revealed Preferences (SARP). Moreover,

Lee and Wong (2005) show that under SARP, we can always choose such a utility to

generate an infinitely differentiable demand. Intuitively, the difference between GARP

and SARP is that SARP does not allow for revealed indifference between observed

choices.
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We study the possibility of falsifying the strict concavity of the utility function

under non-rationalizable choices, i.e., choices that fail GARP. Our interpretation of

non-rationalizable choices is that the agent has an underlying preference but presents

some form of bounded rationality a la Simon (1955). We focus on recovering prefer-

ences using partial efficiency (Afriat, 1973; Halevy, Persitz, & Zrill, 2018; Varian, 1990),

the most popular method to analyze choices that fail GARP non-parametrically.1 Our

main results show that the assumption of a strictly concave utility cannot be falsified

when the choices fail to satisfy GARP.

When a consumer’s choices are sub-optimal, GARP (and SARP) are insufficient to

learn about her preferences. Halevy et al. (2018) propose a method to recover prefer-

ences under bounded rationality. Their starting point is the idea of partial efficiency.

Intuitively, partial efficiency requires a choice to be preferred only to alternatives

whose cost is a given share of the consumer’s income instead of to every available al-

ternative. The chosen share of income is the level of partial efficiency. Formally, take a

data set of N observations, where each observation i is a price vector pi and a choice

xi; partial efficiency vi ∈ [0, 1] in choice i requires xi to be preferred only to bundles

whose cost is vi p
i xi instead of pi xi. The partial efficiency levels of the different ob-

servations are collected in the vector v = (v1, . . . , vN ). Halevy et al. (2018) study the

possibility of rationalizing observed choices under partial efficiency, which we call v-

rationalization in reference to the vector v of partial efficiency levels. They propose a

partial efficiency version of GARP, which we refer to as GARPv, and show a modified

version of the Afriat Theorem. That is, they show that v-rationalization and GARPv

are equivalent. Using this result, the authors then propose to recover preferences by,

according to a cost function, choosing the partial efficiency levels that satisfy GARPv

at a minimum cost.

This paper extends the work in Halevy et al. (2018) to analyze the empirical content

of the strict concavity of the utility function under partial efficiency. Although under

1de Clippel and Rozen (2021) present a more detailed review of different methods.
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partial efficiency, even a strictly concave utility will generate a demand correspondence,

the question of strict concavity sheds light on the empirical content of applied bounded

rationality models, as most such models start with a (full efficiency) strictly concave

utility, and then add an error term around the demand function it generates.

Our first result shows that SARPv (the partial efficiency version of SARP) and v-

rationalization by a strictly concave utility are not equivalent. We develop necessary

and sufficient conditions for v-rationalization by a strictly concave utility under partial

efficiency. These conditions are stronger than GARPv but weaker than SARPv. Put

simply, they allow for indifferences between observed choices as long as all choices

involved in indifferences are interpreted as sub-optimal (i.e., their partial efficiency

level is below one) and each choice has only one choice in the boundary of its (partial

efficiency) budget set. As a second result, we show that SARPv is necessary and

sufficient if v-rationalization is required to be strict, i.e., if every choice is required

to be strictly preferred to every other choice in its (partial efficiency) budget set.

Additionally, we show that, under SARPv, the v-rationalizing utility can be chosen

to generate (under full efficiency) an infinitely differentiable demand.

Our main result shows that if the data fails GARP, then, under partial efficiency,

the existence of a strictly concave utility cannot be falsified. Specifically, suppose the

data fails GARP, then for any utility u(·) and vector v such that the data can be v-

rationalized by u, there is another utility u⋆ and another vector v⋆ such that (1) the

data is v⋆-rationalized by u⋆, (2) u⋆ is strictly concave, and (3) v and v⋆ yield the

same partial-efficiency loss. Figure 1 presents an intuitive explanation of this result.

In (a), we see choice data that fails GARP: x1 is (revealed) strictly preferred to x2,

and x2 is (revealed) strictly preferred to x1. To rationalize the data, we need to add

partial efficiency to one choice, and we do it to x2 since it requires a smaller shrink of

the budget set (the cost of x1 when x2 is chosen is a higher share of the income than

the cost of x2 when x1 is chosen). In (b), we shrink the budget set of x2 such that x1
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x1

x2

(a) Data fails GARP and SARP

x1

x2

(b) Data satisfies (partial efficiency)
GARP and SARP

x1

x2

(c) Data fails (partial efficiency) GARP
and SARP

Figure 1 An intuitive explanation of the main result. In (a) GARP does not hold, so we need partial
efficiency to rationalize the data. In (b) x1 is not in the (relaxed) budget set of x2 and both GARP and
SARP hold. If x1 is in the upper boundary of x2, as in (c), both GARP and SARP fail.

is outside this new budget set, then the data satisfies both GARPv and SARPv, as x
1

is revealed preferred to x2 and x2 is not revealed preferred to x1. However, whenever

x1 is in the (partial-efficiency) budget set of x2, even if it is in the upper boundary as

in (c), the data will fail both GARPv and SARPv.

From Afriat (1967) and Matzkin and Richter (1991), we know that if the data

satisfies GARP, the rationalization by a strictly concave utility can be falsified through

SARP. Our results complete this test by adding that recovering a strictly concave

utility (via partial efficiency) is always possible whenever the data fails GARP. Having

a complete test, we empirically analyze its existence using experimental data from 322
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individuals (50 choices each). For none of them we can rule out the strict concavity

of the utility function. Such a result suggests that, from an empirical standpoint, this

widespread assumption does not carry a cost.

1.1 Related Literature

The idea of revealed preferences traces back to Samuelson (1938). Afriat’s (1967) sem-

inal paper shows that observed choices can be thought of as generated by a continuous,

strictly increasing, and concave utility if, and only if, they satisfy an easy-to-check

condition called cyclical consistency. The most famous version of this condition is

GARP, proposed by Varian (1982). Matzkin and Richter (1991) show that SARP, a

test proposed by Houthakker (1950), is equivalent to a strictly concave utility, therefore

generating a demand function. Lee and Wong (2005) strengthen Matzkin and Richter’s

(1991) result by showing that the same test is sufficient for the utility to generate an

infinitely differentiable demand. Revealed preferences analysis has been extended in

several directions: Chiappori and Rochet (1987) and Ugarte (2023b) study the differ-

entiability of the utility function, Forges and Minelli (2009) study non-linear budget

sets, Reny (2015) studies infinite datasets, and Nishimura, Ok, and Quah (2017) study

general choice environments. Dziewulski, Lanier, and Quah (2024) provide a recent

review of this literature.

The literature studying non-rationalizable choices, i.e., choices that fail GARP,

starts with Afriat (1973). He proposes to use the same level of partial efficiency in

all observations to measure the distance from economic rationality. After him, several

other measures have been proposed, noticing that different decisions can use different

partial efficiency levels (Dean & Martin, 2016; Echenique, Lee, & Shum, 2011; Varian,

1990). Polisson, Quah, and Renou (2020) use the same idea to study distance from

expected-utility models. Methods that do not rely on partial efficiency have also been
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proposed: Houtman and Maks (1985) propose to remove the least number of obser-

vations until the remaining data satisfies GARP, and additional methods have been

proposed recently (de Clippel & Rozen, 2021; Echenique, Imai, & Saito, 2022; Ugarte,

2023a).2 Most empirical papers rely on Afriat (1973) or Houtman and Maks (1985) to

measure the distance from economic rationality, as these methods are computation-

ally more efficient than others (Demuynck & Rehbeck, 2023).3 Halevy et al. (2018)

take a further step and investigate how to use partial efficiency to recover preferences,

focusing specifically on the Varian (1990) Index. The analysis in Halevy et al. (2018)

is the starting point of this paper.

The rest of the paper proceeds as follows. Section 2 presents the problem and

analyzes conditions to rationalize the choices by a strictly concave utility, given a

partial efficiency level. Section 3 shows how to use the Varian Index to choose the

level of partial efficiency, characterizes the test for the existence of a strictly concave

utility under partial efficiency, and implements this test in laboratory data. Finally,

Section 4 concludes.

2 Data Rationalization under Partial Efficiency

2.1 Setup

Consider an agent who consumes bundles of K commodities and makes N choices.4

In each choice i ∈ [N ], she faces a price vector pi ∈ RK
++ and chooses a bundle xi from

the budget set
{
x ∈ RK

+ : pix ≤ 1
}
(the normalization of income to 1 is without loss

of generality). Together, prices and bundles form the data set D = (pi, xi)i∈[N ], which

2Halevy et al. (2018) discusses how the method proposed by Houtman and Maks (1985) can be interpreted
as a special case of partial efficiency.

3For example, Fisman, Kariv, and Markovits (2007) apply the Afriat (1973) method, and Caplin, Dean,
and Martin (2011) apply the Houtman and Maks (1985) method.

4We work with the following notation and terminology: N denotes the set of natural numbers and R the
set of real numbers; R+ is the set of positive numbers including zero, and R++ excludes it. For any M ∈ N,
[M ] is the set of the first M natural numbers. A vector x ∈ RM is x = (x1, x2, . . . , xM ), and ||x|| is its
Euclidean norm. The vectors 0 and 1 have all their components equal to zero and one, respectively. For
any two vectors x, y ∈ RM we write x ≥ y if xi ≥ yi for all i ∈ [M ], x > y if x ≥ y and x ̸= y, and x ≫ y

if xi > yi for all i ∈ [M ] (<, ≤, and ≪ are defined similarly). A function f : RM → R is strictly increasing
[strictly decreasing] if x > y implies g(x) > [<] g(y). Finally, 1{·} is the indicator function.
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is the primitive of our problem. We refer to the bundles in D as choices. As standard

in the revealed preference literature, we assume that the agent spends all her income,

i.e., pi xi = 1.

From Afriat (1967) and Varian (1982), we know that we can interpret the choices

in D as coming from the maximization of a locally non-satiated utility if, and only

if, D satisfies GARP. Moreover, we can choose such utility to be strictly increasing,

continuous, and concave. However, GARP does not assure the possibility of thinking

of the choices as coming from a utility that generates a demand function (instead of

a correspondence). Matzkin and Richter (1991) show that D can be rationalized by a

strictly concave utility if, and only if, it satisfies SARP. Strict concavity of the utility

function implies that the consumer’s demand is a function instead of a correspondence;

this is, that for any price vector p, there is a unique optimal bundle x⋆.5,6 Taking a

further step, Lee and Wong (2005) shows that SARP is also necessary and sufficient

for the existence of a utility that generates an infinitely differentiable demand.7

If D fails GARP, no (meaningful) utility function is consistent with the choices.8

In this case, Halevy et al. (2018) propose to recover a utility function using par-

tial efficiency, a concept proposed by Afriat (1973) and extended by Varian (1990).

Partial efficiency requires each choice xi to be preferred to bundles whose cost at

prices pi is only a share vi ∈ [0, 1] of the income. The collection of all such shares

is the N -dimension vector v = (v1, . . . , vN ), and the revealed preferences are defined

accordingly.

Definition 1. Take v ∈ [0, 1]N , a choice xi, and a bundle x ∈ RK
+ . xi is

- v-directly revealed preferred to x (denoted xi ≿D
v x) if xi = x or pi x ≤ vi;

5To see this, denote the utility by U and the optimal choice by x⋆. By contrapositive take x ̸= x⋆

satisfying p x ≤ 1 and U(x) = U(x⋆). Let α ∈ (0, 1) and x̂ = αx⋆ + (1 − α)x. Then p x̂ ≤ 1, and by strict
concavity U(x̂) > U(x⋆). Therefore x⋆ is not optimal.

6Although some utilities are not strictly concave and generate an infinitely differentiable demand (like
the Leontieff utility), such cases cannot be identified under linear prices.

7If D fails SARP, the demand is not a function but a correspondence. Thus the classical idea of dif-
ferentiability does not apply. Although concepts analogous to differentiability have been proposed for
correspondences (e.g., Khastan, Rodŕıguez-López, & Shahidi, 2021), we are not aware of any application
of such concepts in economics.

8A constant utility always rationalizes D.

8



- v-directly revealed strictly preferred to x (xi ≻D
v x) if pi x < vi;

- v-revealed preferred to x (xi ≿v x) if there exists a sequence of choices (xkℓ)Lℓ=1,

kℓ ∈ [N ], such that xi ≿D
v xk1 ≿D

v xk2 ≿D
v . . . ≿D

v xkL ≿D
v x;

- v-revealed strictly preferred to x (xi ≻v x) if there exist choices xm, xm′
such that

xi ≿v xm ≻D
v xm′

≿v x; and

- if x = xj for some j ∈ [N ], xi is v-revealed indifferent to xj (xi ∼v xj) if xi ≿v xj

and xj ≿v xi.

We write xi ̸≿D
v xj to denote that xi is not directly revealed preferred to xj and

use a similar notation for the other revealed preferences.

The revealed preference relations in Definition 1 compare each choice xi only with

bundles affordable at prices pi and income vi ∈ [0, 1], instead of the original income

of 1. As vi decreases, the bundles that we compare xi with shrink, decreasing the

possibility of interpreting xi as preferred to another bundle. If v = 1, Definition 1

is equivalent to the classical definition of revealed preferences. As with the classical

definition of GARP, we are interested in whether the data we observe can be thought

of as coming from a (meaningful) utility.

Definition 2. D is v-rationalizable by the utility U : RK
+ → R if U(xi) ≥ U(x)

whenever pi x ≤ vi; such utility v-rationalizes D. If U(xi) > U(x) whenever pi x ≤ vi

and x ̸= xi, we say that U strongly v-rationalizes D (and D is strongly v-rationalizable

by U).

The idea of v-revealed preferences leads to the following definition of data

consistency.

Definition 3. Take v ∈ [0, 1]N . D satisfies the Generalized Axiom of Revealed

Preferences given v (GARPv) if for every pair of choices xi, xj

xi ≿v xj =⇒ xj ̸≻D
v xi .
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If v = 1, Definition 2 and Definition 3 are equivalent to the classical definitions

of rationalization and GARP, respectively. Hence, we refer to 1-rationalization as

rationalization and to GARP1 simply as GARP.

From Halevy et al. (2018), we know that Afriat’s (1967) theorem can be extended

to partial efficiency; this is, D satisfies GARPv if, and only if, it is v-rationalizable by

a strictly increasing, continuous, and concave utility. The following section explores

when such a utility can be chosen to be strictly concave.

2.2 Rationalization by a Strictly Concave Utility

Under full efficiency, Matzkin and Richter (1991) show that D can be strongly ratio-

nalized by a continuous, strictly increasing and strictly concave utility if, and only if,

it satisfies SARP. In the same spirit of Definition 3, we propose a partial efficiency

version of SARP.

Definition 4. Take v ∈ [0, 1]N . D satisfies the Strong Axiom of Revealed Preferences

given v (SARPv) if for every two choices xi, xj , whenever xi ̸= xj

xi ≿v xj =⇒ xj ̸≿D
v xi

It is easy to see that SARPv is equivalent to GARPv plus the condition that

xi ̸∼v xj whenever xi ̸= xj . Again, SARP1 is equivalent to Houthakker’s (1950)

axiom, and hence we refer to it as SARP. The following remark shows that although

SARPv only compares different bundles, it does not present inconsistencies regarding

two observations with the same choice.

Remark 1. If D satisfies SARPv and xi = xj , then xi ̸≻v xj .

The proofs of the remarks are in Appendix A. A smaller vector v implies that

we interpret each choice as preferred only to cheaper bundles, which reduces the set
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x1

x2

Figure 2 Representation of Example 1. D fails SARPv but is v-rationalized by a strictly concave and
differentiable utility.

of revealed preferences. Consequently, the requirements for SARPv are relaxed as v

decreases. In the limit case v = 0, the requirements disappear.

Remark 2. Let v′ ≤ v. If D satisfies SARPv then it satisfies SARPv′ .

Remark 3. D satisfies SARP0.

Surprisingly, the equivalence between SARP and rationalization by a strictly con-

cave utility does not hold under partial efficiency. Specifically, a strictly concave utility

could v-rationalize a data set that fails SARPv. Furthermore, v-rationalization by a

strictly concave utility does not imply strong v-rationalization. A data set that fails

SARPv, and is v-rationalized but not strongly v-rationalized by a strictly concave

utility is shown in Example 1 and Figure 2.

Example 1. Suppose K = N = 2, p1 = (1/2, 1/4), x1 = (9/5, 2/5), p2 = (1/4, 1/2), and

x2 = (2/5, 9/5). Take v = (13/20, 13/20). As x1 ≿v x2 ≿D
v x1, D fails SARP. The utility

function U(x) =
√

(1 + x1)(1 + x2) strictly concave, v-rationalizes D, but does not

strongly v-rationalizes it.

The intuition for why SARPv is not necessary for v-rationalization by a strictly

concave utility can be better understood starting with why failing SARP implies that

there is no strictly concave utility rationalizing D under full efficiency. If D fails SARP
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but satisfies GARP, there are i, j such that xi ̸= xj , xi ≿1 xj , xj ≿D
1 xi, and xj ̸≻D

1 xi.

This implies pjxi = 1. According to the revealed preference relation, the decision

maker is indifferent between xi and xj . But as pjxj = pjxi = 1, then for α ∈ (0, 1)

the bundle x⋆ = αxi + (1 − α)xj satisfies pjx⋆ = 1. To rationalize the data by a

strictly concave U is impossible as it implies U(x⋆) > U(xj). Hence U cannot be

strictly concave, and the demand has to be a correspondence. Instead, when v < 1,

SARPv fails, and GARPv holds, we have xi ≿v xj and pjxi = vj . If vj < 1, then x⋆

does not satisfy pjx⋆ ≤ vj for any α ∈ (0, 1); this is, x⋆ is not affordable at prices

pj if the income share of observation j is less than one. Therefore we cannot rule out

v-rationalization by a strictly concave utility.

The previous example suggests that necessary and sufficient conditions for v-

rationalization by a strictly concave utility are “between” GARPv and SARPv, i.e.,

are stronger than GARPv but weaker than SARPv. The following result presents such

conditions.

Theorem 1. D is v-rationalizable by a continuous, strictly increasing, and strictly

concave utility if, and only if, it satisfies GARPv and the following conditions hold

C1: if i, j ∈ [N ] are such that xi ̸= xj and xi ∼v xj, then vi, vj < 1; and

C2: if i, j,m ∈ [N ] are such that xi ∼v xj ∼v xm, and pixj = pixm = vi, then

xm = xj.

The proof of this result is in Appendix B. As in the proofs of Matzkin and Richter

(1991), it first shows a modified version of the Afriat inequalities (in which the inequal-

ities are strict), and then constructs the utility function by first taking linear functions

(one for each observation, as in the original proof of Afriat (1967)), then introducing

a small strict concavification to each of this functions, and finally defining the utility

as the pointwise minimum of such functions. However, our proof presents two im-

portant distinctions with respect to Matzkin and Richter (1991). The first difference

is that the numbers are constructed taking into account the revealed indifferences:
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we first generate inequalities between choices that do not reveal indifferences to each

other (Lemma 2), and then expand them to generate inequalities also between some

observations that reveal indifference to each other. Second, the bundle around which

the strict concavification is generated is different; in Matzkin and Richter (1991) each

linear function is concavified around the bundle it corresponds to (the bundle in its

observation); in our proof we need an additional step to choose where to concavify

around.

Figure 3 shows data sets that illustrate the necessity of C1 and C2. In a), the

data vacuously satisfies C2 and fails C1 as v2 = 1. Since U(x1) = U(x2), the v-

rationalization condition U(x2) ≥ U(x) whenever p2x ≤ v2 implies that all convex

combinations x of x1 and x2 mucst satisfy U(x) ≤ U(x2), hence U cannot be strictly

concave. In b) we have vi < 1 for all the observations, hence C1 holds, but x1 ∼v

x2 ∼v x3, p2x1 = p2x3 = v2, and x1 ̸= x3. Any utility U v-rationalizing this data set

satisfies U(x1) = U(x2) = U(x3), and the v-rationalization condition U(x2) ≥ U(x)

whenever p2x ≤ v2 implies that U cannot be strictly concave, as strict concavity would

imply U(z) > U(x2) whenever z is a convex combination of x1 and x3.

x1

x2

(a) Data fails C1 and satisfies C2

x1

x2

x3

(b) Data satisfies C1 and fails C2

Figure 3 Data sets that fail C1 and C2, respectively. In both cases, the data cannot be rationalized
by a strictly concave utility
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Since SARPv implies that xi ̸∼v xj when xi ̸= xj , the conditions in Theorem 1 are

weaker than SARPv. Hence, if the data satisfies SARPv it can be v-rationalized by a

strictly concave utility. The following result shows that SARPv adds the property that

such rationalization is strict, i.e., that U(xi) > U(x) whenever pix ≤ vi and x ̸= xi.

Theorem 2. D is strongly v-rationalizable by a continuous, strictly increasing, and

strictly concave utility if, and only if, it satisfies SARPv.

We omit the proof of Theorem 2 as it is similar to the one of Theorem 1. The

proof of sufficiency involves only a slight modification to the proof of Theorem 1 using

the fact that there are no v-revealed indifferences between different observations. The

proof of necessity follows from the fact that that if the data is v-rationalizable by

a strictly concave utility but fails SARPv, then we can find i, j such that xi ̸= xj ,

xi ∼v xj , and pixj = vi. Since the v-revealed preferences imply that xi and xj have

the same utility level, the v-rationalization is not strict.

2.3 Differentiability of the Demand Function

In economic terms, the main distinction between a concave and a strictly concave

utility is that, under full efficiency, the demand under the latter is a function while

under the former is a correspondence. Lee and Wong (2005) show that, whenever the

data satisfies SARP, the utility can be chosen such that it generates a demand that

is infinitely differentiable. The following result shows that this property can also be

obtained in the case of SARPv.

Proposition 1. The utility function in Theorem 2 can be chosen to generate (under

full efficiency) an infinitely differentiable demand.

The proof of the previous result is in Appendix C. It starts from the utility function

in Theorem 2 and then constructs an auxiliary data set which is 1-rationalized by

the same utility. Then, following the proof in Lee and Wong (2005), it generates a

second utility that shares the properties of U but generates an infinitely differentiable
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demand. Finally, from the equivalence on how both utilities compare choices in the

auxiliary data set, we can conclude that the second utility strongly v-rationalizes D. In

Appendix F, we show that if we impose partial efficiency in all observations (v ≪ 1),

we can further strengthen the result by generating an infinitely differentiable utility.

The following section focuses on choosing a criterion to pick the level of partial

efficiency, i.e., how to select the vector v, and whether we can distinguish between a

concave and a strictly concave utility under such criterion.

3 Testing Strict Concavity

3.1 Choosing a partial efficiency level

When D fails GARP, we can think of the decision maker as choosing according to a

meaningful utility only if we allow for partial efficiency. However, for any data set,

there is a continuum of vectors v for which it satisfies GARPv, and since there is not

a clear order between vectors in [0, 1]N , we need a criterion to choose a specific v.

Varian (1990) proposes to use a vector v that is as close as possible to 1 in some norm,

using the quadratic norm as an example. Halevy et al. (2018) formalizes this notion

using an aggregator function f(v). The only requirements that we impose on f(v) are

to favor bigger vectors over smaller ones (to be strictly decreasing) and for its value

to be similar when two vectors are close (to be continuous). We also normalize it such

that f(1) = 0 and f(0) = 1.

Definition 5. Let f : [0, 1]N → [0, 1] be a continuous and strictly decreasing function

satisfying f(1) = 0 and f(0) = 1. The Varian Inefficiency Index V (D) is

V (D) = inf
{v∈[0,1]N :D satisfies GARPv}

f(v) . (1)

We refer to the Varian Inefficiency Index as the Varian Index and to f as the loss

function.
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The Varian Index is not the only possible criterion for choosing the level of partial

efficiency; however, as discussed in Halevy et al. (2018), it is the most suitable for

it. Both Afriat’s (1973) Critical Cost Efficiency Index (CCEI) and the Houtman and

Maks (1985) Index (HM Index) can be thought of as variations of the Varian Index

that relax some properties of the loss function.9 Importantly, both these indices will

result in lower efficiency, i.e., a lower v.

An alternative measure of distance from GARP, whose motivation is closely related

to the Varian Index, is the Minimum Cost Index (MCI, Dean & Martin, 2016). The

MCI is defined as the cost (in terms of partial efficiency) of removing revealed prefer-

ences that generate violations of GARP (i.e., that generate revealed preference cycles

that include a strict preference) as a share of the total expenditure.10 Its main concep-

tual difference with the Varian Index is that reducing the partial efficiency level of one

observation might remove several revealed preferences that involve different GARP

violations; in this case, the Varian Index interprets it as only one cost, while the MCI

interprets it as several cost (one per each violation). To be more specific, suppose we

have a data set of three observations, with p1x2 = p1x3 = .95, p2x1 = p3x1 = .5,

and p2x3, p3x2 > 1. Under full efficiency, this dataset has two violations of GARP:

x1 ≻D
1 x2 ≻D

1 x1, and x1 ≻D
1 x3 ≻D

1 x1. The Varian Index (under f(v) = N−1||1−v ||

equals .05/3, where .05 is the partial efficiency level needed in the first observation

to remove both violations of GARP, and 3 is the number of observations. The MCI

equals (2·.05)/3, as the partial efficiency level of the first observation is counted twice

(one per each violation of GARP). Although the MCI could also be used as a criterion

9Afriat’s (1973) CCEI imposes for all the components of the vector v to have the same value (hence
f(v) = 1 − mini∈[N] vi, which is not increasing), and Houtman and Maks (1985) impose that each com-
ponent has to be either zero or one (f(v) =

∑
i∈[N] 1{vi < 1}, which is neither continuous or strictly

increasing). The CCEI remains the most popular in the literature, mainly because the Varian Index is
computationally more demanding: Smeulders, Spieksma, Cherchye, and De Rock (2014) show that it is
NP-Hard. Recently, Demuynck and Rehbeck (2023) developed mixed-integer linear programming methods
to compute the Varian Index and the HM Index and showed that these indices (the Varian Index with a
linear loss function) can be quickly computed for datasets regularly collected in experiments.

10Let R be the directly revealed preference relation restricted to observed choices, with a typical element
being (xi, xj). The MCI is defined as MCI = N−1 minB⊂R

∑
(xi,xj)∈B 1−pixj) such that R\B is acyclic.

The MCI could be used to choose a vector v by taking vi = min(xi,xj)∈B⋆ pixj , where B⋆ is the minimizer

of the previous problem.

16



to choose a partial efficiency vector v, we analyze the Varian Index over the MCI be-

cause of its popularity in the literature. Furthermore, we suspect the same analysis we

do here for the Varian Index might be done to the MCI, reaching similar conclusions.

Finally, another popular measure of distance from GARP is the Money Pump

Index (MPI, Echenique et al., 2011). Although the MPI also measures the cost of

eliminating GARP violations in terms on partial efficiency, it focuses on the average

cost (instead of the minimum cost) of rationalizing a data set and, as such, does not

provide a clear criterion to choose a partial efficiency level as it does not yield a cost

minimizer vector v.11

3.2 Preference Recoverability

The main questions of this paper are how to use the Varian Index to recover a utility

that we can interpret as driving the choices (under partial efficiency) and whether

such utility can be chosen to be strictly convex. This utility can be used, for example,

to understand the costs of parametric assumptions (Halevy et al., 2018; Zrill, 2024),

measure welfare, and obtain information for normative criteria in individual decision-

making (Kariv & Silverman, 2013). For this exercise, we focus our analysis on SARPv,

which, although stronger than v-rationalization by a strictly concave utility, is enough

to characterize our result.

We start by analyzing the additional loss of imposing SARP under partial efficiency.

We find that there is no loss at all: if we modify the Varian Index and ask D to satisfy

SARPv instead of GARPv, it does not change the value of the index.

Proposition 2.

V (D) = inf
{v∈[0,1]N :D satisfies SARPv}

f(v) .

11For each cycle (xm1 , xm2 , . . . , xmL ) in the directly revealed preference relation, the MPI of the cycle is

MPI(xm1 ,xm2 ,...,xmL ) = L−1∑
ℓ∈[L] 1−pmℓxmℓ+1 , where xmL+1 = x1. The authors propose considering

the mean and median of MPIs across cycles as measures of distance from GARP.
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The proof of this result is in Appendix D. Given that the conditions in Theorem 1

are stronger than GARPv and weaker than SARPv, the following is a direct

consequence of the previous result.

Corollary 1.

V (D) = inf
{v∈[0,1]N :D is v-rationalizable by a strictly concave utility}

f(v) .

Given the definition of the Varian Index and Proposition 2, the natural approach

to recover preferences would be first to find v satisfying f(v) = V (D) (which exists

by the intermediate value theorem) and then to analyze the utilities that v-rationalize

D. However, as the Varian Index is an infimum, it might be the case that there is no

v for which V (D) = f(v) and D satisfies GARPv. The following result, whose proof

is in Appendix E, shows that the latter is the case.

Proposition 3. If D fails GARP, then for any v satisfying f(v) = V (D) it also fails

GARPv (and hence SARPv).

Figure 1 shows a simple example that illustrates Proposition 3. In this case we

have x1 ≻D
1 x2 and x2 ≻D

1 x1, which is a violation of SARP and GARP. Assume

without loss that f((1, p2x1)) < f((p1x2, 1)), i.e., that it is less costly to shrink the

budget set of the second observation. As for every ε > 0 small enough we have that

x2 ̸≿(1,p2x1−ε) x
1, D satisfies GARP(1,p2x1−ε). Hence V (D) = f((1, p2x1)). Finally, for

ε = 0 we have x1 ≻D
(1,p2x1) x

2 and x2 ≿D
(1,p2x1) x

1, hence GARP(1,p2x1) fails.

Even though a partial efficiency vector v⋆ satisfying f(v⋆) = V (D) cannot recover

preferences, they can be recovered using a vector v that, although smaller than v⋆, is

arbitrarily close to it. Our main result, Theorem 3, (which is a direct consequence of

Proposition 2 and Proposition 3) shows that the same can be done when the utility is

required to be strictly concave.
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Theorem 3. For every v < 1 such that D is v-rationalizable, there is v⋆ such that

f(v⋆) = f(v) and D is strongly v⋆-rationalizable by a continuous, strictly increasing,

and strictly concave utility.

Proof. As v < 1 and GARPv holds, Proposition 3 implies f(v) < V (D). By Proposi-

tion 2 there is (vn)n∈N such that SARPvn holds for all n, and f(vn) → V (D). Thus

f(vn0) ≥ f(v) for n0 large enough. As f is continuous and strictly decreasing, there

is v⋆ ≤ vn0 such that f(v⋆) = f(v). Remark 2 implies that D satisfies SARPv⋆ .

Theorem 3 implies that, if D fails GARP, then for every vector v for which it is v-

rationalizable there is another vector v⋆ that yields the same cost as v, and for which

we can find a strictly concave utility function that v⋆-rationalizes D. Furthermore,

Proposition 1 implies that such utility can be chosen such that it generates (under

full efficiency) an infinitely differentiable utility. Theorem 3 result fully characterizes

the test to falsify the strict concavity of the utility function; specifically, it implies

that whenever D fails GARP, it is impossible to test for this property. Thus, a strictly

concave utility can be falsified only in a particular case: D has to satisfy GARP and

fail SARP.

3.3 Empirical Implementation

The final question we address is how usual it is to be able to falsify a strictly concave

utility. Theoretically, the answer to this question will depend on the data-generating

process (DGP) of the price vectors that generate the budget sets and the DGPs gen-

erating the choice in each budget set. For example, for any data set in which the

budget sets are all different, and the choice in each budget set is a continuous random

variable, we know that to have two different observations i, j such that pi xj = 1 is a

zero probability event. Hence (almost surely), any data set satisfying GARP will also

satisfy SARP, so convexity cannot be tested.
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We empirically analyze the possibility of falsifying the existence of a differentiable

demand function using experimental data from 322 subjects, coming from the exper-

iments in Ahn, Choi, Gale, and Kariv (2014) and Dembo, Kariv, Polisson, and Quah

(2025). Each subject makes 50 different choices under the design of Choi, Fisman,

Gale, and Kariv (2007): they face a budget set to choose Arrow securities for three

states of the world. We study choices with three states (K = 3) because it is impossi-

ble to identify GARP from SARP if there are only two states and all prices differ.12,13

In each choice, the computer randomly selects a budget set satisfying that all compo-

nents of the price vector are greater than 1/100 (all intercepts lie between 0 and 100).

At least one of them is less than 1/50 (one intercept is greater than 50). Of the total

sample, the 168 subjects from Dembo et al. (2025) knew that all the states had equal

probability. The 154 subjects from Ahn et al. (2014) knew that one state had prob-

ability 1/3 but did not know the probabilities of the other two (besides the fact that

they added to 2/3). At the end of the experiment, the computer randomly chose one

choice and one state of the world, and the subject received payment according to the

securities she bought.

The main finding of our analysis is that no subject satisfies GARP and fails SARP.

Hence, we cannot rule out the existence of a strictly concave utility, neither one gen-

erating (under full efficiency) an infinitely differentiable demand. The specificity of

the case in which these properties can be tested and that we do not observe it in the

data suggest that moving from a concave to a strictly concave utility function does

not carry a cost. We interpret this as a strong signal that assuming strict concavity

of the utility function should not be a concern in applied economic research.

12If K = 2 and two observations i, j ∈ [N ] are such that pi ̸= pj and pi xj = 1, then xi = xj.
13Dembo et al. (2025) show the superiority of experiments with three instead of two states regarding its

power in testing rationalization.
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4 Final Remarks

One of the most widespread assumptions in economic research, both theoretical and

empirical, is to endow consumers with a strictly concave utility function. The main

advantage of this assumption is that when consumers choose perfectly according to

this function, the generated demand is a function instead of a correspondence. Even

research that assumes bounded rationality usually starts from a strictly concave utility

and then adds noise to the choices it generates. In this paper, we study the strict

concavity of the utility function, focusing on cases when the observed choices are not

perfectly aligned with the agent’s underlying preferences.

From Afriat (1967) and Matzkin and Richter (1991), we know that for rationaliz-

able choices, i.e., choices that satisfy GARP, SARP is the test for the existence of a

strictly concave utility rationalizing the choices. If the data satisfies SARP, then there

is a strictly concave utility that rationalizes the data; if it fails SARP, then there is

not. We expand this analysis by recovering preferences through partial efficiency, the

most popular tool to analyze choices that fail GARP.

We first analyze rationalization by a strictly concave utility under partial effi-

ciency. We characterize this rationalization, showing that under partial efficiency, the

conditions are weaker than SARP, as they allow for (some) indifferences between sub-

optimal choices. Then, we show that SARP is necessary if we require rationalization

to be strong; this is, for the choice to be strictly preferred to all the alternatives in its

(partial efficiency) budget set. Moreover, we show that under SARP, the utility can

be chosen to generate (under full efficiency) an infinitely differentiable demand.

Our main result shows that if choices fail GARP, it is impossible to differentiate

between a concave and a strictly concave utility. Using partial efficiency, we can always

choose a strictly concave utility that rationalizes the choices at the lowest possible cost.

We then test the existence of a strictly concave utility in experimental data and find

that this property cannot be falsified in any of the 322 subjects analyzed. Our results
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suggest that the widely used assumption of a strictly concave utility function demand

does not carry an empirical cost, thereby validating its use in economic research.
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Appendix A Proofs of Remarks

Proof of Remark 1. By contrapositive suppose xi ≻v xj . Then there are m,m′ such

that xi ≿v xm ≻D
v xm′

≿v xj . As pmxm = 1 and vm ≤ 1, then xm ̸= xm′
.

Furthermore, xi = xj implies xj ≿D
v xi, thus xm′

≿v xm, a violation of SARPv.

Proof of Remark 2. As v′ ≤ v, xi ≿D
v′ x implies xi ≿D

v x . Hence xi ≿v′ x implies

xi ≿v x. Suppose SARPv holds and xi ≿v′ xj . Then xi ≿v xj , which by SARPv

implies xj ̸≿D
v xi. Hence xj ̸≿D

v′ xi and SARPv′ holds.

Proof of Remark 3. pi xi = 1 implies xi > 0; hence, as pj ≫ 0, we have pj xi > 0 = vj .

Therefore xi ̸= xj implies xi ̸≿D
v xj and SARP0 holds vacuously.

Appendix B Proof of Theorem 1

Lemma 1. There is i ∈ [N ] such that pjxm > vj whenever xj ∼v xi and xm ̸∼v xi.

Proof. Towards a contradiction suppose for every i ∈ [N ] there are xj ∼v xi and

xm ̸∼v xi such that pjxm ≤ vj . Then xi ≿v xj ≿D
v xm, hence xi ≿v xm. Thus,

xm ̸∼v xi implies xm ̸≿v xi and xi ̸= xm. Hence, we can construct an infinite sequence

(nℓ)ℓ∈N such that, for every ℓ, xnℓ ̸= xnℓ+1 xnℓ ≿v xnℓ+1 and xnℓ+1 ̸≿v xnℓ . As D is

finite, there is an observation that repeats in the sequence, i.e., there are r, s ∈ N such

that s ≥ r + 2 and xnr = xns . But then xnr+1 ≿v xns = xnr , a contradiction.
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Lemma 2. If GARPv holds there are numbers ui ∈ R and λi > 0 such that

ui > uj + λi(vi − pixj) whenever xi ̸∼v xj; and

ui = uj and λi = λj whenever xi ∼v xj .

(B1)

Proof. We proceed by induction on N . If N = 1, then u1 = λ1 = 1.

Suppose GARP holds for all databases comprised of N − 1 or less observations,

and take D comprised of N observations. By Lemma 1, and without loss of generality,

suppose N is such that pi · xj > 1 whenever xi ∼v xN and xj ̸∼v xN . If xi ∼v xN for

all i, set ui = λi = 1 for every i ∈ [N ]. Then the conditions hold.

If there is j such that xj ̸∼v xN , then the data set (pj , xj){j:xj ̸∼vxN} is comprised

of N − 1 or less observations, hence numbers ui, λi satisfying the conditions exist for

this data set. Take ε > 0, and for every i such that xi ∼v xN set

ui = min
{m:xm∼vxN}

min
{j:xj ̸∼vxN}

uj − λj(vj − pj · xm)− ε .

As ∼v is an equivalence relation, ui = uj whenever xi ∼v xj . Moreover, whenever

xj ̸∼v xN and xi ∼v xN we have ui ≤ uj − λj(vj − pj · xi)− ε < uj − λj(vj − pj · xi).

Whenever xi ∼v xN set

λi = max

{
max

{m:xm∼vxN}
max

{j:xj ̸∼vxN}

uj − um

pm · xj − vm
+ ε; 1

}
.

Hence λi = λN > 0 whenever xi ∼v xN . Finally, if xi ∼v xN and xj ̸∼v xN it follows

form the definition of λi and pi · xj > vi that u
i > uj + λi(vi − pi · xj).

Proof of sufficiency in Theorem 1. Set M > 0, and define g(x) =
(
M + ||x||2

)1/2 −

M 1/2. As D satisfies GARPv there are numbers ui ∈ R and λi > 0 such that (B1)

holds (Lemma 2).
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For every i, let Ii = {j ∈ [N ] : xi ̸= xj , xi ∼v xj , and pixj = vi}. Then Ii = ∅ if,

and only if, there is no xj ̸= xi such that xi ∼v xj .14 Let

Bi =


Ii if Ii ̸= ∅

{j ∈ [N ] : xi = xj} if Ii = ∅

As i ∈ Bi whenever Ii = ∅, then Bi ̸= ∅ for all i and i ∈ Bi if, and only if, Ii = ∅. We

show that ui > uj + λi(vi − pixj) whenever j /∈ Bi:

- If Ii = ∅, then from (B1) we have ui > uj + λi(vi − pixj) whenever xj /∈ Bi.

- If Ii ̸= ∅, GARPv implies pixj > vi whenever xi ̸= xj , xi ∼v xj and j /∈ Bi;

furthermore, condition C1 implies pixj > vi whenever xi = xj . Since ui = uj

whenever xi ∼v xj and λi > 0, we have ui > uj + λi(vi − pixj) whenever xi ∼v xj

and j /∈ Bi. Along with (B1), this implies ui > uj +λi(vi − pixj) whenever xj /∈ Bi.

Define the function γ : [N ] → [N ] by γ(i) = j for some j ∈ Bi, and note that, by

C2, xγ(i) = xj whenever j ∈ Bi. As λi pik > 0 there is ε > 0 such that

ui − εg(xγ(i) − xj) > uj + λi(vi − pixj) whenever j /∈ Bi; and (B2)

λipik > ε for all i ∈ [N ], k ∈ [K] . (B3)

Let ϕi(x) = ui−λi(vi−pix)−εg(x−xγ(i)) for every i ∈ [N ], and U(x) = mini∈[N ] ϕ
i(x).

Since each ϕi is continuous, strictly concave, and strictly increasing, U(x) inherits

these properties.15

14If there is xj ̸= xi satisfying xi ∼v xj then xi ≿v xj and there is m ∈ [N ] such that xi ̸= xm and
xi ≿D

v
xm ≿v xi; as GARPv holds we have pixm = vi, hence m ∈ Ii. If there is not xj ̸= xi satisfying xi ∼v xj,

then clearly Ii = ∅.
15ϕi(·) is strictly increasing since, from (B3), for all k ∈ [K]

∂ϕi(x)

∂xk

= λ
i

p
i

k
− ε

xk − xγ(i)

k

(M + ||x − xγ(i)||)1/2
> λ

i

p
i

k
− ε > 0 .
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We show that U(xi) ≥ ui for all i. If j /∈ Bi, (B2) implies ϕj(xi) > ui. If j ∈ Bi,

then ui = uj (by (B1)), pj · xi ≥ vj (by GARPv), and xγ(j) = xi; hence ϕj(xi) =

ui − λj(vj − pjxi)− εg(xγ(j)− xi) = ui − λj(vj − pjxi) ≥ ui.

Finally, take x satisfying pix ≤ vi. Then

U(x) ≤ ui − λi(vi − pix)− εg(x− xγ(i)) ≤ ui ≤ U(xi) .

The first inequality follows form the definition of U ; the second from λi > 0, ε > 0,

pix ≤ vi; and g(·) ≥ 0; and the last from U(xi) ≥ ui. We conclude that U v-rationalizes

D.

Proof of necessity in Theorem 1. Suppose that D is rationalizable by a continuous,

strictly increasing, and strictly concave utility.

- That GARPv holds follows from Theorem 1 in Halevy et al. (2018).

- Towards a contradiction suppose C1 fails, i.e., there are i, j ∈ [N ] such that xi ̸= xj ,

xi ∼v xj , and, without loss of generality, vi = 1. As xi ≿v xj , there is a sequence

of observations (mℓ)ℓ∈[L] such that xi ≿D
v xm1 ≿D

v . . . ≿D
v xmL ≿D

v xj , where,

without loss of generality, xm1 ̸= xi. Furthermore, xm1 ≿v xj and xj ≿v xi imply

xm1 ≿v xj . As D is v-rationalizable we have U(xi) = U(xm1). Moreover, xi ≿D
v xm1

implies pixm1 ≤ 1, thus pi(x
i
/2 + xm1/2) ≤ 1. However, strict concavity of U implies

U(x
i
/2 + xm1/2) > U(xi), which contradicts v-rationalization by U .

- Towards a contradiction suppose C2 fails, i.e., there are i, j,m ∈ [N ] satisfying

xi ∼v xj ∼v xm, pixj = pixm = vi, and xj ̸= xm. Since U v-rationalizes D,

v-revealed preferences imply U(xi) = U(xj) = U(xm). By strict concavity of U ,

U(x
j
/2+ xm

/2) > U(xi), which, As pi(x
j
/2+ xm

/2) = vi, contradicts v-rationalization

by U .
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Appendix C Proof of Proposition 1

Lemma 3. Let U be a continuous, strictly concave, and strictly increasing utility

generating a demand m : RK
++ × R++ → RK

+ . For every x ∈ RK
+ \ {0} there is p ≫ 0

such that m(p, 1) = x.

Proof. Take x ∈ RK
+ \ {0}. Since U is strictly concave it has a supergradient b at x;

this is, U(x) > U(y) + b(x− y) whenever y ̸= x. We first show, by contradiction, that

b ≫ 0. Suppose bk ≤ 0 for some k ∈ [K], denote by ek the vector with kth component

equal to one and all the others equal to zero, and set y = x+ ek > x. As U is strictly

increasing, U(y)+ b(x−y) = U(y)− b ek = U(y)− bk ≥ U(y) > U(x), a contradiction.

Define p = (b x)−1b ≫ 0. Then p x = 1. Moreover, y ̸= x and p y ≤ 1 imply

U(x) > U(y) (since b x ≤ b y). Therefore x = m(p, 1).

Proof of Proposition 1. Suppose D satisfies SARPv and let U be a continuous, strictly

concave, and strictly increasing utility v-rationalizing D (Theorem 2). Let m(p, e) be

the demand function generated by U . By strong v-rationalization, for every i ∈ [N ]

we have U(xi) ≥ U(m(pi, vi)), with strict inequality if vi < 1. Construct the data set

D̃ = (p̃j , x̃j)j∈[J] as follows: for every i in [N ]

- If vi = 1, add an observation (p̃j , x̃j) = (pi, xj).

- If vi < 1, add two observations (p̃j , x̃j) and (p̃j
′
, x̃j′), where:

- p̃j = pi, x̃j = m(pi, vi), and

- x̃j′ = xi, p̃j
′
= p for some p such that m(p, 1) = xi, which exists by Lemma 3.

By construction D̃ is strongly 1-rationalized by U , hence it satisfies SARP. By

Lee and Wong (2005) there is an strictly increasing, strictly concave Ũ that strongly

1-rationalizes D̃ and generates an infinitely differentiable demand. Furthermore, from

their proof we can choose Ũ agreeing with U on how to compare choices in D̃, i.e.,

Ũ(xi) ≥ Ũ(xj) ⇐⇒ U(xi) ≥ U(xj) whenever i, j ∈ [J ]
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Finally, take any i ∈ [N ].

- If vi = 1 then there is j ∈ [J ] such that (p̃j , x̃j) = (pi, xi). By strong rationalization

of D̃ we have that Ũ(xi) > Ũ(x) whenever pi x ≤ vi and x ̸= xi.

- If vi < 1 then there are j, j′ ∈ [J ] such that p̃j = pi, x̃j = m(pi, vi), x̃
j′ = xi,

and m(p̃j
′
, 1) = xi. As vi < 1, strong rationalization of D by U implies U(xi) >

U(m(pi, vi)) = U(x̃j). Moreover, as Ũ and U agree on how to rank choices in D̃, we

have Ũ(xi) > Ũ(x̃j). Strong rationalization of D̃ by Ũ implies that Ũ(xi) > Ũ(x̃j) ≥

Ũ(x) whenever pi x ≤ vi.

Therefore Ũ strongly v-rationalizes D.

Appendix D Proof of Proposition 2

Lemma 4. If GARPv holds then there is a sequence (vn)n∈N such that

1. vn ≤ vn+1 for all n;

2. vn → v; and

3. D satisfies SARPvn for all n.

Proof. Suppose GARPv holds, and let C = {(i, j) ∈ [N ] × [N ] : xi ̸= xj , xi ≿v

xj , and xj ≿D
v xi}. As D satisfies GARPv, then (i, j) ∈ C implies xj ̸≻D

v xi, thus

vj = pjxi > 0. Define vn by

vnj =


n

n+1vj if (i, j) ∈ C for some i ∈ [N ]

vj otherwise.

Then vn ≤ vn+1 for all n, and vn → v. Moreover, if (i, j) ∈ C then vnj < vj .

Finally, suppose xi ̸= xj and xi ≿vn xj . If (i, j) /∈ C then xj ̸≿D
v xi, and pjxi >

vj ≥ vnj . If (i, j) ∈ C then pjxi = vi > vni . Hence xj ̸≿D
vn xi, therefore D satisfies

SARPvn .
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Proof of Proposition 2. As SARPv is stronger than GARPv,

inf
{v∈[0,1]N :D satisfies SARPv}

f(v) ≥ V (D) . (D4)

By definition of V (D) there is a sequence vn → v⋆ such that GARPvn holds

for all n and f(v⋆) = V (D). By Lemma 4, for each n there is a sequence (bn,i)i∈N

such that bn,i → vn and D satisfies SARPbn,i for every i, n ∈ N. Set ε > 0 and

for each n take j(n) such that ||vn −bn,j(n)|| < ε/n. Define the sequence (cn)n∈N by

cn = bn,j(n). Then D satisfies SARPcn for all n and cn → v⋆. Continuity of f implies

f(cn) → f(v⋆), thus

inf
{v∈[0,1]N :D satisfies SARPv}

f(v) ≤ f(v⋆) = V (D) . (D5)

(D4) and (D5) imply the desired result.

Appendix E Proof of Proposition 3

This proof uses a criteria of almost data consistency developed by Polisson et al. (2020,

Appendix A9.1).

Definition 6. For v ∈ [0, 1]N , D almost satisfies GARPv (i.e., it satisfies aGARPv) if

there is a sequence (vn)n∈N such that

1. vn ≤ v;

2. vn → v; and

3. D satisfies GARPvn for all n ∈ N.

Lemma 5. D satisfies aGARPv if, and only if, when restricted to the choices in D,

≻D
v is acyclic.

Proof. See Polisson et al. (2020, Appendix A9.1).

Lemma 6. If D satisfies aGARPv, then V (D) ≤ f(v).
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Proof. It follows from the definitions of V (D) and aGARPv.

Proof of Proposition 3. Suppose GARP fails and take v such that f(v) = V (D). If D

fails aGARPv then it also fails GARPv. If it satisfies aGARPv then

- If v = 1 then GARPv fails by assumption.

- If v < 1 then there is i such that vi < 1; define A = {j ∈ [N ] : xj ≻v xi}. Towards

a contradiction suppose GARPv holds. Then pixj > vi for all j ∈ A.16 As A is

finite there is ε > 0 such that pixj > vi + ε for all j ∈ A. Define v′ ∈ [0, 1]N by

v′n =


vi + ε if n = i

vn otherwise.

When restricted to choices in D, ≻D
v =≻D

v′ . By Lemma 5, aGARPv implies that

≻D
v restricted to choices is acyclic, hence ≻D

v′ also is and aGARPv′ holds. But

v′ > v implies f(v′) < f(v) = V (D), which contradicts Lemma 6.

As D fails GARPv, it also fails SARPv.

Appendix F Differentiable Utility under partial

efficiency

Here we address the problem of strongly v-rationalizing a data set using a utility

function that is continuous, strictly increasing, strictly concave, and infinitely differen-

tiable. We show that under SARPv, it is possible to recover an infinitely differentiable

utility if we impose partial efficiency in all observations, i.e., if v ≪ 1. As shown by

Chiappori and Rochet (1987), a sufficient condition for differentiability of a strictly

concave utility function is for the demand data to be “invertible”; this is, different

choices have to come from different prices (pi ̸= pj implies xi ̸= xj). A non-invertible

16If not, then xi ≿D

v
xj. As xj ≻v xi there are m,m′ such that xj ≿v xm ≻D

v
xm′

≿v xi. Then xm′
≿v xm and

xm ≻D

v
xm′

, and GARPv fails.
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demand implies that the same bundle is optimal from two different price vectors, which

(as income is normalized to one) contradicts the first order condition of equality be-

tween the marginal rate of substitution and the price ratio.17 However, if the partial

efficiency level of a choice is less than one, this equality is not necessary anymore.

Hence we can find a differentiable utility that v-rationalizes non-invertible choice data.

Theorem 4. If v ≪ 1 and D satisfies SARPv, then it is strongly v-rationalizable by

a strictly increasing, strictly concave, and infinitely differentiable utility function.

Following the results in Section 3, it is easy to see that a version of Theorem 2

applies to a differentiable utility; this is, if v < 1 and D satisfies GARPv, there is

v⋆ ≪ 1 such that D satisfies SARPv⋆ and f(v⋆) = f(v).

The proof of Theorem 4 uses a modified version of the Afriat inequalities.

Lemma 7. If D satisfies SARPv and v ≪ 1 then there are numbers ui ∈ R and

λi > 0 for i ∈ [N ] such that for all i, j ∈ [N ]

ui > uj + λi(vi − pixj) (F6)

Proof. By Lemma 2 there are numbers ui ∈ R and λi > 0 such that (F6) holds

whenever xi ̸= xj and ui = uj whenever xi = xj . As vi < 1, whenever xi = xj we have

pi xj = pi xi = 1 > vi. Therefore, as λi > 0, ui = uj > uj + λi(vi − pixj) whenever

xi = xj .

Proof of Theorem 4. By Lemma 7 there is ε > 0 small enough such that

ui − εg(xi − xj) > uj + λi(vi − pixj) for all i, j ∈ [N ] (F7)

λi pik > ε for all i ∈ [N ], k ∈ [K] (F8)

17In a strict sense, equality between the marginal rate of substitution and the price ratio is necessary only
when goods are consumed in a strictly positive amount. See Ugarte (2023b) for more details.
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Define the function

U(x) = min
i∈[N ]

ui − λi(vi − pix)− εg(x− xi) .

Since each function ui − λi(vi − pix)− εg(x− xi) is continuous, strictly concave, and

strictly increasing,18 U(x) inherits these properties. Furthermore, from (F7) we have

U(xi) = min
j∈[J]

uj − λj(vj − pjxi)− εg(xj − xi) > ui .

Although U is continuous, strictly increasing, and strictly concave, it is not dif-

ferentiable. Following Chiappori and Rochet (1987) we smooth U by convolution. For

δ > 0 denote by B(δ) the ball or radius δ centered at 0. As U(x) is continuous and

U(xi) > ui, there is η small enough such that for all i ∈ [N ] whenever x ∈ B(η) we

have U(xi − x) > ui. Define

ρ1(x) =


[∫

RK exp
(
− 1

||y||2−1

)
dy

]−1

exp
(
− 1

||x||2−1

)
if ||x|| ≤ 1

0 otherwise.

ρ(x) =
1

η
ρ

(
x

η

)

So ρ(x) is continuous, infinitely differentiable,19 symmetric (ρ(x) = ρ(−x)), weakly

positive (ρ(x) ≥ 0), and strictly positive whenever ||x|| < η. It also satisfies

∫
B(0,η)

ρ(ξ) dξ = 1, and (F9)

18ϕi is strictly increasing since from (F8) for all k ∈ [K] we have

∂ϕi(x)

∂xk

= λ
i

p
i

k
− ε

(
(xk)

2

M +
∑

k∈[K]
(xk)2

)
> λ

i

p
i

k
− ε > 0 .

19In particular all the partial derivatives on ρ(x) of any order equal zero whenever ||x|| = η.
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∫
B(0,η)

ξρ(ξ) dξ = 0 . (F10)

Define

V (x) = (U ⋆ ρ)(x)

=

∫
RK

U(x− ξ)ρ(ξ) dξ

=

∫
B(η)

U(x− ξ)ρ(ξ) dξ (F11)

V is infinitely differentiable, strictly concave, and strictly increasing (see Chiappori &

Rochet, 1987). Finally take x satisfying pi x ≤ vi. Then

V (x) =

∫
B(η)

U(x− ξ)ρ(ξ) dξ

=

∫
B(η)

[
min
j∈[N ]

uj − λj(vj − pj (x− ξ))− εg(x− ξ − xj)

]
ρ(ξ) dξ

≤
∫
B(η)

[
ui − λi(vi − pi (x− ξ))− εg(x− ξ − xi)

]
ρ(ξ) dξ

=
[
ui − λi(vi − pi x)

] ∫
B(η)

ρ(ξ) dξ − λipi
∫
B(η)

ξρ(ξ) dξ−

− ε

∫
B(η)

g(x− ξ − xi)ρ(ξ) dξ

= ui − λi(vi − pix)− ε

∫
B(η)

g(x− ξ − xi)ρ(ξ) dξ

< ui − λi(vi − pix)

≤ ui

=

∫
B(η)

uiρ(ξ) dξ

<

∫
B(η)

U(xi − ξ)ρ(ξ) dξ

= V (xi) .
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The second line follows from the definition of U ; the third one from i ∈ [N ]; the

fourth one rearranges terms; the fifth one from (F9) and (F10); the sixth one from the

positivity of g; the seventh one from λi > 0 and pi x ≤ vi; the eight one from (F9);

the ninth one from ui < U(xi − ξ) whenever ξ ∈ B(η); and the tenth one from the

definition of V . We conclude that V strongly v-rationalizes D.
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