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These notes are based in the corresponding chapters of Martin Osborne and Ariel Rubinstein’s book “A Course

in Game Theory”, which I refer to as OR. Some ideas were also taken from Martin Osborne’s book “An

introduction to Game Theory”, which I refer to as O.

Summary

This section starts with the study of the simpler situation of agents strategic interaction:

strategic games (a.k.a. normal form games). We introduce the main ideas and present the

basic equilibrium concept: Nash Equilibrium. After that we study two refinements of the

idea of Nash equilibrium: trembling hand perfection and evolutionary stability.

1.1 Basic Notions

A strategic game in a setting in which a set of players make choices all the same time, and

each player has preferences not only about her choice but about the profile of choices.

Definition 1.1. A strategic game is a tuple G = 〈N, (Ai)i∈N , (ui)i∈N 〉 where

- N is a set of players;

- Ai is the set of Player i’s possible actions (we denote the set of action profiles A =

×i∈NAi); and

- ui : A→ R is Player i’s utility function, which depends on the action profile a ∈ A.

When we think about what players can do, we allow for them to randomize. This is, instead

of choosing an action ai ∈ Ai, Player i’s strategy is a probability measure on Ai, which we

denote αi ∈ ∆Ai. We assume that each utility function ui can be extended from A to ∆A

by taking the expected value. This is, for a profile of strategies α ∈ ×i∈N∆Ai we have that

Ui(α) =
∑
a∈A

∏
j∈N

αj(aj)

ui(a) .

A basic requirement is for players to act optimally according to their preferences (repre-

sented by their utility function). As each player’s utility depend on the whole profile of
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strategies, her optimal strategy will depend on what the other players are doing. This leads

to the idea of a best response. For this, denote by α−i the strategy profile of the other

players; this is, α−i ∈ ×j∈N\ {i}∆Aj .

Definition 1.2. Player i’s best response correspondence BRi : ×j∈N\ {i}∆Aj ⇒ ∆Ai
is defined by

BRi(α−i) = arg max
αi∈∆Ai

Ui(αi, α−i)

Our first notion to predict behavior is the notion of Nash Equilibrium (NE). Intuitively,a

profile of strategies α is a NE if no Player can increase her utility without the other players

changing their behavior, i.e., if all players are acting according to their best response.

Definition 1.3. A strategy profile α? is a Nash Equilibrium (NE) if for every i ∈ N and

αi ∈ ∆Ai we have

Ui(α
?) ≥ Ui(αi, α?−i) .

Exercise 1.4. Suppose α is a NE of the game G, and for Player i there are two ac-

tions a′i, a
′′
i ∈ Ai, where a′i 6= a′′i , such that αi(a

′
i) > 0 and αi(a

′′
i ) > 0. Show that

Ui(δa′i , α−i) = Ui(δa′′i , α−i), where δa′i and δa′′i are the probability measures assigning

probability one to a′i and a′′i , respectively. (This is, show that for a player to randomize

between two actions in equilibrium she has to be indifferent between the two.)

Solution. To simplify notation, for each action ai ∈ Ai write Ui(ai) = Ui(δai , α−i). We have

that

Ui(α) =
∑
ai∈Ai

αi(ai)
∑

a−i∈A−i

∏
j∈N
j 6=i

αj(aj)

ui(ai, a−i) =
∑
ai∈Ai

αi(ai)Ui(ai) .

Define the strategy α′i for Player i as follows

α′i(ai) =


αi(a

′
i) + α(a′′i ) if ai = a′i

0 if ai = a′′i

αi(ai) otherwise.

We have that

Ui(α
′
i, α−i) =

∑
ai∈Ai

α′i(ai)Ui(ai) =
∑
ai∈Ai
ai 6=a′i,a′′i

αi(ai)Ui(ai) + (αi(a
′
i) + αi(a

′′
i ))Ui(a

′
i) .

Hence

Ui(α)− Ui(α′) = αi(a
′′
i )(Ui(a

′′
i )− Ui(a′i)) < 0 .
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Therefore α′i is a profitable deviation for i, and α is not a NE. �

The seminal result regarding strategic games is Nash’s (1950)1 proof that an equilibrium

exists.

Theorem 1.5 (Nash, 1950). Every game with a finite number of players and action profiles

has at least one Nash equilibrium.

The proof is basically an elegant application of Kakutani’s fixed point theorem.2 I encourage

the interested reader to read the original paper (it is only 1 page long!).

1.2 Evolutionary Stability

Evolutionary stability is a criteria to analyze population dynamics. The motivation is the

following: suppose we have a large population of individuals who are all the same, and each

one can choose an action a ∈ A. This individuals are randomly matched in pairs, and play a

completely symmetric game G = 〈1, 2, (A,A), (u1, u2)〉. We interpret payoffs being related

to probability of survival and reproduction. The question we want to ask is which actions

seem reasonable to see in the long run.

Suppose we start by a population in which all individuals play action a? ∈ A, and a small

share ε of the population mutate and start playing a different action a ∈ A. Then, the

population playing a should disappear in the long run if their payoff is lower than the

payoff of the population playing a?. This is

(1− ε)u(a?, a?) + εu(a?, a) > (1− ε)u(a, a?) + εu(a, a) . (1.1)

If (1.1) holds for any a 6= a?, then we should expect a? to be the action that we see in the

long run, and we call this action an evolutionary stable strategy.

Definition 1.6. The action a? ∈ A is an evolutionary stable strategy (ESS) of the

symmetric game G if and only if there is ε > 0 such that (1.1) holds for any a 6= a?.

The following lemma gives us a nice criteria for finding ESSs.

Lemma 1.7. The action a? ∈ A is an ESS if and only if for any a 6= a? either

1. u(a?, a?) > u(a, a?); or

1 Nash, John (1950). Equilibrium Points in n-Person Games. Proceedings of the National Academy of
Sciences of the United States of America, 36, 48-49.

2 Kakutani, Shizuo (1941). A generalization of Brouwer’s fixed point theorem. Duke Mathematical
Journal, 8, 457-459.
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2. u(a?, a?) = u(a, a?) and u(a?, a) > u(a, a).

The next one gives us some properties of ESSs.

Lemma 1.8. 1. If a? is an ESS then (a?, a?) is a NE.

2. If (a?, a?) is a strict NE (u(a?, a?) > u(a?, a) for all a) then a? is an ESS.

3. If ui(a, a) 6= ui(a
′, a′) for any a, a′ ∈ A, then there is a mixed strategy α that is an

ESS.

Note in particular the counterpositive of the first result: If (a, a) is not a NE, then a is not

an ESS.

1.3 Rationalizability and Dominance

The idea behind the concept of NE is that each player knows the strategies the other players

are playing. However, in some cases this assumption may be too strong. Rationalizability

and dominance are two concepts that allow us to make predictions if we want to relax the

previous assumption.

Definition 1.9. An action ai ∈ Ai is rationalizable if for each j ∈ N there exist Zj ⊆ Aj
such that (1) ai ∈ Zi, and (2) every action aj ∈ Zj is the best response to some belief of

player j that assigns strictly positive probability only to other players’ actions aj ∈ Z−j .

The following exercise helps is an application of the idea of rationalizability.

Exercise 1.10 (OR 56.4). (Cournot Duopoly) Consider the strategic game 〈{1, 2}, (Ai), (ui)〉
in which Ai = [0, 1] and ui(a) = ai(1 − a1 − a2) for i = 1, 2. Show that each player’s only

rationalizable action is his unique NE action.

Solution. First, note that Player i’s best response is aBRi (a−i) = (1−a−i)/2. Thus the NE is

a? = (1/3, 1/3).

Let Zi be the set of rationalizable actions, with m = inf Zi and M = supZi. As the game

is completely symmetric, we have that Z1 = Z2 = Z. Take a belief µ of Player i about

Player −i’s actions, which has expected value aµ ≡ Eµ[a−i]. Player i’s best response given

this belief is aBRi (µ) = (1−aµ)/2.

As supp µ ⊆ [m,M ], we have that aµ ∈ [m,M ], and therefore aBRi (µ) ∈ [(1−M)/2, (1−m)/2].

By definition, if ai ∈ Z then it is a best response to some belief µ, so m ≥ (1−M)/2 and

M ≤ (1−m)/2. These two inequalities and the fact that m ≤M imply that m = M = 1/3. �



Section 1: Strategic Games 1-5

b1 b2 b3 b4

a1 0,7 2,5 7,0 0,1

a2 5,2 3,3 5,2 0,1

a3 7,0 2,5 0,7 0,1

a4 0,0 0,-2 0,0 10,-1

Figure 1.1: The game in Exercise 1.11.

Exercise 1.11. Find the set of rationalizable actions of each player in the two-player game

in Figure 1.1.

Solution. The actions of Player 1 that are rationalizable are a1, a2, and a3; those of Player

2 are b1, b2, and b3. The actions a2 and b2 are rationalizable since (a2, b2) is a NE. Since

a1 is a best response to b3, b3 is a best response to a3, a3 is a best response to b1, and b1 is

a best response to a1 the actions a1, a3, b1, and b3 are rationalizable. The action b4 is not

rationalizable since if the probability that Player 2’s belief assigns to a4 exceeds 1/2 then

b3 yields a payoff higher than does b4, while if this probability is at most 1/2 then b2 yields

a payoff higher than does b4. The action a4 is not rationalizable since without b4 in the

support of Player 1’s belief a4 is dominated by a2.

That b4 is not rationalizable also follows from it being strictly dominated by the mixed

strategy that assigns the probability 1/3 to b1, b2, and b3. �

The second approach to the question about what is reasonable for player to play if they do

not know other players’ strategies is the idea of eliminating strictly dominated actions.

Definition 1.12. The action ai ∈ Ai is strictly dominated if there is a mixed strategy

αi of Player i such that ui(αi, a−i) > ui(ai, a−i) for all a−i ∈ A−i.

The next result shows the equivalence between rationalizability and strategies that are not

strictly dominated.

Proposition 1.13. If X ⊆ A survives iterated elimination of strictly dominated actions,

then for every i ∈ N the set of Player i’s rationalizable actions is Xi.

1.4 Trembling Hand Perfection

The idea behind trembling hand perfection is to allow players to make small (uncorrelated)

mistakes when they choose. The idea is the following. Suppose Player i wants to choose

action ai, i.e. wants to choose the strategy σi with σi(ai) = 1. However, instead she chooses

a strategy σ′i which is completely mixed but still gives high probability to ai (we interpret



Section 1: Strategic Games 1-6

the small probabilities of the other strategies as mistakes). Now suppose the same is true

for all the players, so they want to play the strategy profile σ = (σi)i∈N but instead play

σ′ = (σ′i)i∈N . The question we want to ask is the following. Given the other players’

mistakes σ′−i, soed Player i still wants to play σi? If a strategy profile satisfies this property

we say that it is a trembling hand perfect equilibrium.

Definition 1.14. The strategy profile σ is a trembling hand perfect equilibrium of

a finite strategic game if and only if there exists a sequence (σk)∞k=1 of completely mixed

strategy profiles such that for every i ∈ N the strategy σi is a best response to σk−i for all

values of k.

We finish this section with a couple of exercises

Exercise 1.15 (2016 Midterm). Consider the following Matching Pennies game in which

Player 1 has an outside option x ∈ (0, 1) shown in Figure 1.2. Find the set of mixed strategies

H T

O(ut) x, 0 x, 0

H 1,-1 -1,1

T -1,1 1,-1

Figure 1.2: The game in Exercise 1.15.

for Player 1 that survive iterated elimination of strictly dominated actions. Are these

strategies rationalizable? Find the sets of all NE and Trembling Hand Perfect equilibria.

Solution. Let Player 1’s strategy be (p1, p2, 1−p1−p2), and Player 2’s strategy be (q, 1−q).
Then

u1 = p1x+p2(q−(1−q))+(1−p1−p2)(−q+(1−q)) = p1x+p2(2q−1)+(1−p1−p2)(1−2q) .

If 2q = 1 then it is optimal for Player 1 to set p1 = 1 (p2 = 0, 1−p1−p2 = 0); if 2q > 1 then

it is optimal for Player 1 to set 1− p1 − p2 = 0, and if 2q < 1 then it is optimal for Player

1 to set p2 = 0. Therefore a strategy in which Player 1 plays both H and T with strictly

positive probability is strictly dominated. As Player 2’s strategy now depends if Player 1

plays H or T with positive probability, we cannot eliminate any Player 2’s strategy (we

cannot eliminate mixing since is possible when p1 = 1). Furthermore, we cannot eliminate

any other strategy. The set of rationalizable strategies is the same as the set of strategies

that survive iterated elimination of strictly dominated actions.

There is no pure strategy NE. To allow Player 2 to mix we need

U2(H) = U2(T ) ⇐⇒ −p2 + (1− p1 − p2) = p2 − (1− p1 − p2) ⇐⇒ 1− p1 − p2 = p2 .
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Since from the first part we know that in any NE either p2 = 0 or 1− p1− p2 = 0, from the

previous condition we get that in any NE Player 1’s strategy is (1, 0, 0). For this strategy

to be optimal we need

U1(O) ≥ U1(H) ⇐⇒ x ≥ q − (1− q) ⇐⇒ q ≤ 1 + x

2

U1(O) ≥ U1(T ) ⇐⇒ x ≥ −q + (1− q) ⇐⇒ q ≥ 1− x
2

.

Therefore, any strategy profile ((1, 0, 0), (q, 1− q)) with q ∈ [1−x/2, 1+x/2] is a NE.

All these equilibria are Trembling Hand perfect. Let σ1 = (1, 0, 0) and σ2 = (q, 1− q) with

q ∈ [1−x/2, 1+x/2]. As σ2 is completely mixed, take σk2 = σ2 for all k ∈ N. Finally, take the

sequence (εk)k∈N with εk > 0, and let the candidate for Player 1’s strategy be

σk1 = (1− εk, zεk, (1− z)εk)→ σ1 .

For σ2 to be a best response to σk1 we need

U2(σk1 , H) = U2(σk1 , T ) ⇐⇒ zεk − (1− z)εk = −zεk + (1− z)εk ⇐⇒ z =
1

2
.

So σ2 is a best response to σk1 when z = 1/2, and we found the required sequence. �

Exercise 1.16. Consider the variant of the Hawk-Dove game shown in Figure 1.3. (when

D H

D 1,1 0,2

H 2,0 1− c, 1− c

Figure 1.3: The game in Exercise 1.16.

c > 1 the game has the standard Hawk-Dove structure). Find of all Nash and trembling

hand perfect equilibria for all values of c. Are the equilibrium strategies evolutionary stable?

Solution. It is clear that the value of c is relevant for a player when the other player is

playign H. Moreover, H is best response if and only if c ≤ 1. We analyze the three cases

1. c < 1. In this case H is strictly dominant, so (H,H) is the unique NE, which is

trembling hand perfect, and H is an evolutionary stable strategy.

2. c > 1. In this case there are two pure strategy NE, (D,H) and (H,D) and a mixed

strategy NE in which both players play D with probability (c−1)/c. The mixed strategy

NE is clearly trembling hand perfect. Consider the sequence of strategies (1−εk, εk)→
(1, 0). The action H is a best response to this each element of the sequence if

2(1− εk) + (1− c)εk ≥ 1− εk
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which is clearly true if εk is small enough. Finally, take the sequence of strategies

(εk, 1− εk)→ (0, 1). The action D is a best response to each element of the sequence

if

εk ≥ 2ε+ (1− c)(1− ε)

which again is true for εk small enough. Therefore the NE (D,H) and (H,D) are

trembling hand perfect.

Our only candidate for a ESS is the mixed strategy α = ((c−1)/c, 1/c). As this is a

completely mixed strategy equilibrium, it is clear that u(α, α) = U(D,α) = U(H,α).

From Lemma 1.7 we have that α is an ESS if and only if U(α,D) > U(D,D) and

U(α,H) > U(H,H). However U(α,D) = (c−1)/c < 1 = U(D,D), so α is not an ESS.

3. c = 1: There are three NE: (D,H), (H,D), and (H,H). We check trembling hand

perfection:

- (H,H). As H is strictly better than D for Player i when Player −i plays D, then

adding tremble towards D for Player −i does not make playing D for Player i

more attractive. Therefore (H,H) is trembling hand perfect.

- (D,H) (and (H,D)). Take the sequence of strategies (εk, 1− εk) → (0, 1). The

action D is a best response to each element of the sequence if εk ≥ 2ε, which is

obviously not true, so (D,H) and (H,D) are not trembling hand perfect.

Finally, our only candidate for an ESS is H. Note that U(H,H) = U(D,H) and

U(H,D) > U(D,D), so H is an ESS.

�
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Summary

In this section we study extensive games. We first revise the setup of the problem in

order to get familiar with the notation. Then we study equilibria, first in games with

perfect information and then in games with imperfect information (when players may not

have all the information about what happened in the past). The main takeaway is that

the concept of Nash equilibrium seems to be insufficient in these setting. Therefore, we

study stringer equilibrium concepts, which add additional requirements. These are subgame

perfect equilibrium in the case with perfect information, and sequential equilibrium in the

case with imperfect information. At the end we focus on a specific case of extensive games

of imperfect information, known as Bayesian extensive games.

2.1 Extensive Games of Perfect Information

2.1.1 Setup

According to OR, an extensive game is an “explicit description of the sequential structure

of the decision problems encountered by players in specific situations”. The main charac-

teristic of this structure is that players make decisions not only at the beginning of the

game but whenever have to play. Therefore, they can revise their “original” plan of action.

In the specific case of perfect information, at each point where a player has to choose, she

knows everything that has happened before that point.

2-1

mailto:cugarte@berkeley.edu


Section 2: Extensive Games with Perfect and Imperfect Information 2-2

Definition 2.1. An finite extensive game with perfect information Γ is a tuple

Γ = 〈N,H,P, (%i)i∈N 〉, where

- N is the set of players.

- H is a set of finite sequences, called histories. Each history h = (ak)k=1,...,K describes

the first K actions taken in the game. The set H satisfies the following properties

- ∅ ∈ H; and

- if (ak)k=1,...,K ∈ H and L < K, then (ak)k=1,...,L ∈ H.

We say that a history (ak)k=1,...,K ∈ H is terminal if there is no action aK+1 such that

(ak)k=1,...,K+1 ∈ H, and call Z the set of terminal histories. A history is nonterminal

if it is not terminal.

- P : H \ Z → N is the player function, which assigns to each nonterminal history

(each member of H Z) a player (a member of N). P (h) is the player who has to take

an action after history h.

- For each player i ∈ N , %i is her preference relation on the set of terminal histories Z.

Generally, finite extensive games with perfect information can be represented (if they are

simple enough) graphically by a rooted tree whose leafs are payments and all the other

vertices are players, while its edges are actions.1 The following exercise helps us to relate

both representations.

Exercise 2.2. Formally define all the components of the game shown in Figure 2.1. If it’s

easier use utility functions instead of preference relations.

1Formally, a rooted tree is a specific type of graph, and a graph G is a pair (V,E), where V is a set of
vertices and E ⊆ V × V is a set of directed edges, that is, if (a, b) ∈ E, then (a, b) is interpreted as an edge
going from vertex a to vertex b. A path p in G is a sequence v1, . . ., vn of edges in G such that for every
i ∈ {1, . . . , n − 1} we have (vi, vi+1) ∈ E. The path p is said to go from a to b if v1 = a and vn = b in the
previous definition, that is, if the starting vertex of p is a and the ending vertex of this path is b. A graph
is said to be a rooted tree if there exists a unique vertex r ∈ V (called the root) such that for every vertex
a ∈ V with a 6= r, there exists a unique path from r to a. Finally, a vertex b is a leaf of a rooted tree if
there is no edge of the form (b, b′) for any vertex b′.
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1, 1, 1

3, 3, 2 0, 0, 0 4, 4, 0 0, 0, 1

C c

D d

L R L R

1 2

3 3

Figure 2.1: A perfect information version of Selten’s Horse.

2.1.2 Strategies, Outcomes, and Nash Equilibrium

In our definition of a strategy we need to include the fact that players may revise their

action plans whenever they have to play. To do this, for each nonterminal history h we

denote by A(h) the set of feasible actions for Player P (h); this is A(h) = {a : (h, a) ∈ H}.
We use this set to define strategies.

Definition 2.3. For i ∈ N , a strategy of Player i in the game Γ is a function si that

assigns an action a ∈ A(h) to every nonterminal history h ∈ H \ Z for which P (h) = i. A

strategy profile is a collection of strategies s = (si)i∈N

Intuitively, a strategy tells us what each player will do at every point she has to play. If

Player i follows the strategy si, the for every history h with P (h) = i she will choose si(h).

Note that each strategy profile s leads to an outcome O(s), which is the terminal history

that results when each player i ∈ N follows the strategy si.
2 Given what we know from the

study of strategic games, it seems natural to extend the solution concept of Nash equilibrium

to this setting.

Definition 2.4. A Nash equilibrium (NE) of Γ is a strategy profile s? such that for every

player i ∈ N and strategy si we have that

O(s?) %i O(s?−i, si)

2 This is, O(s) is the terminal history (ak)k=1,...,K satisfying sP ((aj)j=1,...,k)
((aj)j=1,...,k) = ak+1 for every

k = 0, . . . ,K − 1.
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A simple way of finding the set of Nash equilibria of a game Γ is to consider its strategic

form. This is, to think of Γ as a strategic game where instead of actions players choose

strategies. Formally the definition is

Definition 2.5. The strategic form of Γ is the strategic game 〈N, (Si)i∈N , (%′i)i∈N 〉,
where for each player i ∈ N

- Si is the set of Player i’s strategies in Γ;

- %′i is defined by s %′i s
′ ⇐⇒ O(s) %i O(s′) for all s, s′ ∈ ×i∈NSi.

We use the strategic form to find the Nash equilibria in the following exercise.

Exercise 2.6. Find the pure strategy Nash equilibria on the game shown in Figure 2.1.

2.1.3 Subgames and Subgame Perfect Equilibrium

The concept of NE has two particular properties in extensive games:

- It does not require to define a strategy profile completely. In particular, it does not

need to define a player’s actions in histories that are inconsistent with her previous

actions; and

- Can lead to unreasonable actions off the equilibrium path, which themselves define

the equilibrium path.

Exercise 2.7. Find the pure strategy Nash equilibria of the game shown in Figure 2.2.
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0, 0 2, 1 1, 2

A

L R

B

1

2

Figure 2.2: (OR 96.2) A two player extensive game.

While B,L is a Nash equilibrium, its seems to be naive from Player 1’s perspective.

- Player 1 chooses B because if not then Player 2 will choose L

- But Player 2’s choice of L is suboptimal if Player 1 plays A

Intuitively, Player 1 is choosing B because of the threat that, if she chooses A, Player 2 will

play L. However, this it seems unreasonable for Player 1 to believe Player 2’s threat as if

Player 1 chooses A then it is optimal for Player 2 to choose R.

To solve this problem we need to define a new equilibrium concept, in which we ask players

to choose optimally in every history in which they have to play (i.e., after every h for which

P (h) = i), independent if these histories occur in equilibrium. In order to accomplish this,

we need to define the subgames of the game.

Definition 2.8. Given a finite extensive game with perfect information Γ and a nonterminal

history h ∈ H \ Z, the subgame that follows h is the extensive game with perfect

information Γ(h) = 〈N,H|h, P |h, (%i |h)i∈N 〉, where

- H|h is the set of sequences h′ of actions for which (h, h′) ∈ H;

- P : H|h → N is defined by P |h(h′) = P (h, h′); and

- %i |h is defined by h′ %i |hh′′ ⇐⇒ (h, h′) %i (h, h′′).

In simple, after each nonterminal history h Players start a new game. This game is the

remainder of the original game after the actions that already occurred. As each subgame is

itself a game, we should require them to act optimally after each history. This requirement

is called subgame perfection.

Definition 2.9. A subgame perfect equilibrium (SPE) of the extensive game with

perfect information Γ is a strategy profile s? for which for any nonterminal history h ∈ H \Z
the strategy profile s?|h is a Nash equilibrium of Γ(h) (where s|h refers to what the strategy

prescribes after history h).
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A couple of comments on the relation between NE and SPE:

- a SPE of the game Γ is also a NE of this game (why?);

- a NE is not necessarily a SPE (verify this in the game shown in Figure 2.2), i.e., SPE

is a refinement.

2.1.4 Existence of subgame perfect equilibrium and the one deviation

property

Exercise 2.10. Show that (when the game is extended to mixed strategies) every finite

extensive game with perfect information has a NE equilibrium.

As the requirements for a subgame perfect equilibrium are stronger than the requirements

for the Nash equilibrium, the existence of a subgame perfect equilibrium is not obvious. In

order to prove the existence of a subgame perfect equilibrium we use the following result,

known as the one deviation property. This result allows us to narrow our search of profitable

deviations when looking for an equilibrium.

Proposition 2.11 (The one deviation property). The strategy profile s? is a subgame perfect

equilibrium of the finite horizon extensive game with perfect information Γ if and only if for

every player i ∈ N and every history h ∈ H for which P (h) = i we have

Oh(s?|h) %i |hOh(s?−i|h, si|h)

for every strategy si|h of Player i in the subgame Γ(h) that differs from s?i |h only in the

action it prescribes after the initial history of Γ(h).

An intuitive “proof”. Here we show in an example why the one-deviation property works.

The general proof (below) is just a generalization of the same argument. Start from the

game in Figure 2.3 and the strategy profile specified there.

To see the equivalence between an SPE and the one-deviation property we analyze both

directions.
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2 2

1 1 1 1

2 2 2 2 2222

1

Figure 2.3: Example of a dynamic game and a strategy profile.

1. If the strategy is an SPE, then it is clear that it satisfies the one-deviation property

(since there are no profitable deviations).

2. If the strategy is not an SPE then we want to show that there is a one-shot profitable

deviations and hence it fails the one-deviation property. Suppose there is a profitable

deviation that is not a one-shot deviation, and suppose that this deviation is optimal.

For example suppose the optimal strategy for Player 2 is the one in Figure 2.4.

2 2

1 1 1 1

2 2 2 2 2222

1

Figure 2.4: A profitable deviation.

In Figure 2.4 we see a profitable deviation in which Player 2 changed her strategy in

the subgame after Player 1 played R. Specifically, Player 2 chooses L (instead of R)

when the history is R and L (instead of R) when the history is RLL.

If the strategy in Figure 2.4 is the optimal strategy, that implies that to play L is

optimal after the history RLL. This implies that another profitable deviation from

the strategy in Figure 2.3 is the one shown in Figure 2.5.

2 2

1 1 1 1

2 2 2 2 2222

1

Figure 2.5: A one-shot deviation.

Note that the strategy in Figure 2.5 is both profitable and a one-shot deviation. Hence

the original strategy does not satisfy the one-deviation property.
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Proof of Proposition 2.11. If s? is a subgame perfect equilibrium it is clear that it satisfies

the condition. To prove the other direction, suppose s? is not a subgame perfect equilibrium.

Then there is a player i who can deviate profitably in the subgame Γ(h′). From among all

the profitable deviations of Player i in Γ(h′) choose the strategy si|h′ for which the number

of histories h such that si|h′ 6= s?i |h′(h) is minimal (note that as the game is finite, this

number also is).

Let h∗ be the longest history h of Γ(h′) for which si|h′(h) 6= s?i |h′(h) (i.e., h∗ is the “deepest

deviation point”). Then, s?i |(h′,h∗) and si|h′ |h∗ = si|(h′,h∗) differ only in the action they pre-

scribe after history (h′, h∗). Furthermore, si|(h′,h∗) is a profitable deviation, since otherwise

there would be a profitable deviation after h′ that differs from s?i |h′ after fewer histories than

does si|h′ . Thus, si|(h′,h∗) is a profitable deviation in Γ(h′, h∗) that differs from s?i |(h′,h∗)
only in the action it prescribes after the initial history of Γ(h′, h∗).

The one deviation property tells us that to test if a strategy profile s? is a subgame perfect

equilibrium, we only need to compare s? with other strategy profiles that differ of s? in only

one action. This property is a very powerful tool, which can be extended to infinite games

(with discount factor less than one) and games with imperfect information (see OR 227.1).

It also allows us to prove the existence of a subgame perfect equilibrium by construction.

This is, the proof also illustrates how to find the subgame perfect equilibrium in any specific

game.

Proposition 2.12. Every finite extensive game with perfect information Γ has a subgame

perfect equilibrium.

Proof. Let `(Γ) be the length of the longest history in Γ, which we call the length of the

game. Also, let R : H → Z be a function that assigns a terminal history to every history

h ∈ H. We propose a specific function R which specifies a subgame perfect equilibrium of

the game. To do this by we proceed by induction on the length of subgames `(Γ(h)).

- If `(Γ(h)) = 0 then h is a terminal history. Define R(h) = h.

- Suppose R(h) is defined for all h ∈ H with `(Γ(h)) ≤ k, and take h∗ ∈ H such that

`(Γ(h∗)) = k+1. Let P (h∗) = i. As `(Γ(h∗)) = k+1, we have that `(Γ(h∗, a)) ≤ k for

all a ∈ A(h∗). Define s?i (h
∗) to be a %i |h maximizer of R(h∗, a) over A(h∗). Define

R(h∗) = R(h∗, s?i ).

By induction we have now defined a strategy profile s? in the game Γ. Also, by construction

this profile satisfies the one deviation property, and is therefore (Proposition 2.11) a subgame

perfect equilibrium.

We finish the study of perfect information with an exercise
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Exercise 2.13 (O 177.2, with an extension). A childs action a (a number) affects both

her own private income c(a) and her parents’ income p(a); for all values of a we have

c(a) < p(a). The child is selfish: she cares only about the amount of money she has. Her

loving parents care both about how much money they have and how much their child has.

Specifically, model the parents as a single individual whose preferences are represented by

a payoff equal to the smaller of the amount of money they have and the amount of money

the child has. The parents may transfer money to the child. First the child takes an action,

then the parents decide how much money to transfer.

1. Show that in a subgame perfect equilibrium the child takes an action that maximizes

the sum of her private income and her parents income.

2. Suppose c(a) = 1+2a−a2 and p(a) = 100+2a−a2 (so both payments are maximized

at a = 1). Construct a Nash equilibrium of this game in which the child chooses a = 2.
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2.2 Extensive Games of Imperfect Information

Extensive games of imperfect information are the extension of extensive games with perfect

information to situation in which a Player, at the time she has to play, may not have all

the information about what happened in the past. Specifically, the main differences are.

- There are moments in the game when no player has to play. Instead changes in the

environment happen according to an exogenous probability distribution. In these

moments we say that chance (represented by c) is the one who acts.

- Players may be imperfectly informed about some (or all) moves made in the past by

other players (including c).

The fact that players are not completely informed about past behavior of other players

makes the evaluation of different actions more complex. When a Player has to choose an

action, she needs to take into account not only what other players will do in the future, but

also what she believes they did in the past (the specific reason for this will be clear later).

2.2.1 Setup

Formally, a finite extensive game with imperfect information is defined as follows

Definition 2.14. An finite extensive game with imperfect information is a tuple

Γ = 〈N,H,P, fc, (Ii)i∈N , (%i)i∈N 〉, where

- N is the set of players.

- H is the set of histories (satisfying the same properties as in Definition 2.1).

- P : H \Z → N ∪{c} is the player function, which also includes the chance in its range

(if P (h) = c, then chance determines the action after history h).

- A function fc that for any history h for which P (h) = c assigns a probability measure

fc(·|h) on A(h).

- For each Player i ∈ N an information partition of {h ∈ H : P (h) = i}. Each

element Ii ∈ Ii is a information set, and satisfies that A(h) = A(h′) whenever

h, h′ ∈ Ii.
- For each Player i ∈ N a preference relation %i on the set of lotteries over Z, namely

∆Z, that can be represented as the expected value of a payoff function defined on Z.
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A couple of comments about the previous definition:

- Each player’s information partition tells us about the histories over which the Player

cannot distinguish. This is, if h, h′ ∈ Ii, then when Player i has to play after both h

and h′ and she cannot distinguish which of the two histories (or any other history in

Ii) is the one that occurred.

- We do not allow more than one player to move after any history. However, there is

a sense in which an extensive game as defined above can model such a situation, as

shown in Figure 2.6. Although Player 1 moves first, Player 2 has not any information

about Player 1’s actions when she has to move. Players’ interaction is essentially the

same as one in a strategic game.

0, 0 2, 1 1, 2 3, 0

A B

L R L R

1

2

Figure 2.6: An extensive game with imperfect information and “simultaneous moves”.

2.2.2 Strategies

We start from our classical definition of strategies. the main difference here is that players

choose not after a specific history, but when they reach a specific information set.

Definition 2.15. Given Γ, a pure strategy is a function that assigns to every information

set Ii ∈ Ii an action a ∈ A(Ii).

We have two possible ways to think how a player randomizes among her possible actions

Definition 2.16. A mixed strategy of player i is a probability measure over the set of

her pure strategies.

A behavioral strategy of player i is a collection (βi(Ii))Ii∈Ii of independent probability

measures, where βi(Ii) is a probability measure over A(Ii).

In games with perfect recall (as the ones we study here) there is a sense in which both

mixing possibilities are equivalent. For any profile σ = (σi)i∈N of either mixed or behavioral

strategies, let O(σ) be the probability measure over terminal histories induced by σ.

Proposition 2.17. For any mixed strategy of a player in a finite extensive game with

perfect recall there is an outcome-equivalent behavioral strategy.
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Proof. OR 214.1.

Given this equivalence, we will focus on behavioral strategies for our equilibrium definitions.

Definition 2.18. A Nash equilibrium in behavioral strategies of the game Γ is a

profile of behavioral strategies β? such that for every Player i ∈ N and every behavioral

strategy βi of Player i we have

O(β?) %i O(β?−i, βi) .

2.2.3 Beliefs and Sequential Equilibrium

By now, it should be clear that the concept of Nash equilibrium may be insufficient.

- Each player should play optimally even in situations that do not happen (like in SPE).

- However, in this case we need for players to act optimally at every information set.

(why?)

What does it mean for a Player to act optimally at a given information is not always

straightforward to define. In the game shown in Figure 2.2.3 the idea of subgame perfection

is unproblematic. It rules out the equilibrium L, r, as if for some reason Player 2 reaches

her information set, she unequivocally prefers to play L instead of R.

2, 2

3, 1 0, 0 0, 2 1, 1

L M R

` r ` r

1

2

Figure 2.7: (OR 219.1) An extensive game with imperfect information in which the re-
quirement that each players strategy be optimal at every information set eliminates a Nash
equilibrium.

The game shown in 2.8 presents the (more common) situation in which subgame perfection

is not a straightforward criteria.

- L, r is a Nash equilibrium;

- however, if Player 2’s information set is reached her optimal action depends on her

beliefs about how she got there:

- if she thinks it is more likely that she reached her information set because Player

1 played M , then it is better for her to play `.
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1, 1

3, 1 -2, 0 2, 0 -1, 1

L M R

` r ` r

1

2

Figure 2.8: (OR 226.1) An extensive game with imperfect information that has a Nash
equilibrium that cannot be ruled out simply by subgame perfection.

- if she think it is more likely that the reason is that Player 1 played R, then r is

the optimal choice.

If we want to apply the idea of subgame perfection to every extensive game with imper-

fect information, we need to address the problem of how players define their beliefs when

they reach information sets. Therefore, instead of focusing on strategy profile we focus on

assessments, which include both strategies and beliefs.

Definition 2.19. An assessment in the game Γ is a pair (β, µ), where β is a profile of

behavioral strategies, and µ is a function that assigns to every information set a probability

measure on the set of histories in that set.

Given O(β) (the probability measure over terminal histories induced by β) and µ, a new

probability measure O(β, µ|I) can be computed at each information set I. The analogous

to subgame perfection in this setting is that whenever a Player potentially has to choose

(i.e. at every information set), she is acting according to her preferences and beliefs. This

requirement is called sequential rationality.

Definition 2.20. The assessment (β, µ) if the game Γ is sequentially rational if for every

player i ∈ N , every information set Ii ∈ Ii and every behavioral strategy β′i of Player i we

have

O(β, µ|Ii) %i O((β−i, β
′
i), µ|Ii) .

We still have the problem about how to define beliefs.

- Natural requirement is is for beliefs to be updating using Bayes’ rule.

- However, it is not always straightforward. Take the game shown in Figure 2.8 and

compare the profiles M, ` and L, r. Both these profiles are Nash equilibria and cannot

be ruled out by subgame perfection.

- In the M, ` equilibrium, it is clear that Player 2’s beliefs at her information set

assign probability one to have reached it because Player 1 played M , since that

is Player 1’s strategy.
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- In the L, r equilibrium the probability of Player 1 playing M or R is zero, and

therefore Player 2’s beliefs cannot be computed using Bayes’ rule. And if we can-

not compute player 2’s beliefs, we cannot know if Player 2’s strategy is optimal.

To overcome this problem, we use a criteria called consistency.

Definition 2.21. As assessment (β, µ) is consistent if there is a sequence ((βn, µn))∞n=1 of

assessments that converges to (β, µ) in Euclidian space and has the properties that strategy

profile βn is completely mixed, and each belief system µn is derived from βn using Bayes’

rule.

Intuitively, an assessment is consistent if

- beliefs are formed using Bayes’ rule when possible; and

- when this is not possible, they are the limit of the beliefs using Bayes’ rule for some

trembling of the behavioral strategy of the assessment.

Although the consistency requirement is rather opaque and not very intuitive, it is the

criteria usually required to define beliefs in information sets that have probability zero of

being reached.3

Sequential rationality and consistency lead to the definition of sequential equilibirum.

Definition 2.22. An assessment (β?, µ?) is a sequential equilibrium of the game Γ if it

is sequentially rational and consistent.

It is possible to show that a sequential equilibrium exists. However, the proof is quite

cumberstone. It starts by reducing the game Γ to a strategic game, for which shows that

a trembling hand perfect equilibrium exists. Then, it shows that for every trembling hand

perfect equilibrium of the strategic game you can construct an assessment that is a sequential

equilibrium. Therefore, a sequential equilibrium must exist.

Proposition 2.23. Every finite extensive game with imperfect information has a sequential

equilibrium.

Proof. OR Propositions 248.2, 249.1, 251.2, and Corollary 253.2.

We finish the section applying the concept of sequential equilibrium to some exercises.

3To quote David Kreps’ book A course in Microeconomic Theory (p. 430): “[r]ather a lot of bodies are
buried in this definition”.
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Exercise 2.24 (OR 226.1). Find the set of sequential equilibria of the game in Figure 2.8.

1, 1

3, 1 -2, 0 2, 0 -1, 1

L M R

` r ` r

1

2
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Exercise 2.25 (OR 225.1). Find the set of sequential equilibria of the Selten’s Horse

1, 1, 1

3, 3, 2 0, 0, 0 4, 4, 0 0, 0, 1

3

C c

D d

L R L R

1 2
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Exercise 2.26 (2020 Final). Find the set of sequential equilibria of the following game.

1

L
M

R

1, 3

2

L
M
R L

M
R

0, 4 0, 1 4, 0 4, 0 0, 1 0, 4
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2.3 Bayesian Extensive Games

A Bayesian Game is an extensive game in which each player has a type which is her private

information. Everything in the game is observable to every player except the other players’

types.

2.3.1 Setup

Definition 2.27. A Bayesian extensive game with observable actions is a tuple

〈Γ, (Θi)i∈N , (pi)i∈N , (ui)i∈N 〉 where

- Γ = 〈N,H,P 〉 is an extensive game with perfect information and simultaneous moves

(this is, P : H \ Z ⇒ N).

- Θi is a finite set (the set of Player i’s possible types) with a typical element θi ∈ Θi.

We denote a profile of types by θ = (θi)i∈N and the set of such profiles by Θ = ×i∈NΘi.

- pi ∈ ∆Θi; this is, pi is a probability measure on Θi. This measure has full support

(pi(θi) > 0 for all θi ∈ Θi) and the measures pi are independent.

- ui : Θ× Z → R is a von-Neumann Morgensten utility function.

We can think of this game as an extensive game with imperfect information (and simulta-

neous moves) in which in the first step chance chooses the types of the players, and then

players play according to the structure of the game. The main property of the game is that

the only action that Player i cannot observe is the chance’s choice about Θ−i. In this game

the set of histories is {∅} ∪ (Θ × H) and each information set of Player i is of the form

Ii(θi, h) = {((θi, θ−i), h) : θ−i ∈ Θ−i} for θi ∈ Θi and h ∈ H.

As we can think of Bayesian extensive games with observable actions as extensive games with

imperfect information, an assessment is a natural candidate for an equilibrium. However,

some characteristics of the game takes us to focus in a subclass of assessments:

- As each player can observe her own type θi and the history of moves h, we can define

a strategy for each type of each player. This is, for each Player i we need to define

a family of strategies (σi(θi))θi∈Θi
, where each strategy σi(θi) prescribes an action

a ∈ Ai(h) for every history h ∈ H \ Z for which i ∈ P (h).4

- As all players j 6= i have the same prior belief about Player i’s type, and all the actions

are observable, they all have the same information about i. Hence, all players j 6= i

should have the same beliefs about i’s type.

From the previous remarks, our equilibrium candidate is a pair (σ, µ), where σ = ((σi(θi))θi∈Θi
)i∈N

4This is not a restriction with respect to the original notion of behavioral strategies, just a clear way of
thinking about them in this specific setting. Ai(h) is the set of actions available to Player i after history h.
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is a profile of behavioral strategies and µ = (µi(h))i∈N,h∈H\Z is a belief system. This is, for

each i ∈ N and θi ∈ Θi, the function σi(θi) is a behavioral strategy that takes a nonterminal

history h ∈ H \ Z such that i ∈ P (h) and prescribes a probability measure on Ai(h). And

for each i ∈ H and h ∈ H \ Z, µi(h) is a probability measure on Θi describing the beliefs

about θi of each Player j 6= i.

2.3.2 Perfect Bayesian Equilibrium

Given a belief system µ, denote by µ−i be belief system derived from µ about the types of

every player except i. For any strategy profile σ, Player i’s behavioral strategy si, and belief

system µ, let O((σ−i, s), µ−i|h) be the probability measure on the set of terminal histories

Z generated by the strategy profile σ−i of players j 6= i, the belief about their types µ−i,

and Player i’s strategy si. The solution concept that we use is the following

Definition 2.28. Let 〈Γ, (Θi)i∈N , (pi)i∈N , (ui)i∈N 〉 be a Bayesian extensive game with ob-

servable actions. A pair (σ?, µ?) =
(
(σ?i (θi))θi∈Θi,i∈N , (µ

?
i (h))i∈N,h∈H\Z

)
is

- Sequentially rational if for every h ∈ H\Z, i ∈ N , θi ∈ Θi, and Player i’s behavioral

strategy si we have

O((σ?−i, σ
?(θi)), µ

?
−i|h) %θi O((σ?−i, si), µ

?
−i|h) ,

where %θi is derived from ui(θi, ·).
- PB-consistent if for each i ∈ N we have that µ?i (∅) = pi and, whenever possible, µ?i

is derived from Bayes’ rule.

The pair (σ?, µ?) is a Perfect Bayesian equilibrium (PBE) if it is sequentially rational

and PB-consistent.

The question about equilibrium existence can be answered directly from our knowledge

about sequential equilibrium. As we argued, every Bayesian extensive games with observ-

able actions is an extensive game with imperfect information, where we know a sequential

equilibrium exists. Moreover, the requirements of PBE are weaker than the requirements

of sequential equilibrium, as PB-consistency is a weaker requirement than consistency (as

it does not say anything about beliefs off the equilibrium path). Therefore, a PBE can be

constructed from the each sequential equilibrium of the extensive game associated with the

original game. How to do this is shown in the next proposition.

Proposition 2.29 (OR 234.1). Let (β, µ) be a sequential equilibrium of the extensive game

associated with the Bayesian extensive game 〈Γ, (Θi)i∈N , (pi)i∈N , (ui)i∈N 〉. For every h ∈
H \ Z, i ∈ P (h), and θi ∈ Θi, let σi(θi)(h) = βi(I(θi, h)). Then there is a collection
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(µi(h))i∈N,h∈H\Z , where µi(h) ∈ ∆Θi, such that

µ(I(θi, h))(θ, h) =
∏

j∈N\{i}

µj(h)(θj) for all θ ∈ Θ and h ∈ H

and ((σi)i∈N , (µi)i∈N ) is a PBE of the Bayesian extensive game.

Proof. Since (β, µ) is a sequential equilibrium there is a sequence of assessments (βn, µn)∞n=1 →
(β, µ). In this sequence (1) each strategy profile βn is completely mixed and (2) each belief

system µn is derived from βn using Bayes’ rule. For each h ∈ H, i ∈ P (h), and θi ∈ Θi

let σni (θi)(h) = βni (Ii(θi, h)) for each value of n. Given these (completely mixed) strategies

define a profile (µni )i∈N of beliefs in the Bayesian extensive game that is derived from Bayes’

rule. It is straightforward to show that

µn(I(θi, h))(θ, h) =
∏

j∈N\{i}

µnj (h)(θj) for each value of n.

This equality and the properties of (µni )i∈N are preserved in the limit, so

µ(I(θi, h))(θ, h) =
∏

j∈N\{i}

µj(h)(θj) .

Thus by the sequential rationality of the sequential equilibrium, ((σi)i∈N , (µi)i∈N ) is se-

quentially rational and hence a perfect Bayesian equilibrium.

With this result the existence of a PBE is straightforward

Proposition 2.30. Every Bayesian extensive game with observable actions has a PBE.

Proof. Follows directly from the previous result and the existence of a sequential equilibrium

in extensive games.

We finish the review of Bayesian extensive games by solving an exercise.

Exercise 2.31 (OR 246.2). Pre-trial negotiation Player 1 is involved in an accident with

Player 2. Player 1 knows whether she is negligent or not, but Player 2 does not know; if

the case comes to court the judge learns the truth. Player 1 sends a “take-it-or-leave-it”

pre-trial offer of compensation that must be either 3 or 5, which Player 2 either accepts or

rejects. If she accepts the offer the parties do not go to court. If she rejects it the parties go

to court and Player 1 has to pay 5 to player 2 if he is negligent, and 0 otherwise; in either

case Player 1 has to pay the court expenses of 6. Formulate this situation as a signaling

game and find its sequential equilibria. Suggest a criterion for ruling out unreasonable

equilibria.
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Suggested Solutions

Cristián Ugarte C. cugarte@berkeley.edu

Exercise 2.2 Formally define all the components of the game shown in Figure 2.1. If it’s

easier use utility functions instead of preference relations.

1, 1, 1

3, 3, 2 0, 0, 0 4, 4, 0 0, 0, 1

C c

D d

L R L R

1 2

3 3

Figure 2.1: A perfect information version of Selten’s Horse.

Solution.

- N = {1, 2, 3}
- H = {∅, C, Cc, Cd,CdL,CdR,D,DL,DR}, H = {Cc,CdL,CdR,DL,DR}
- P (∅) = 1, P (C) = 2, P (Cd) = P (D) = 3

- Utility functions are defined in the following table

u1 u2 u3

Cc 1 1 1

CdL 4 4 0

CdR 0 0 1

DL 3 3 2

DR 0 0 0

�

2-1

mailto:cugarte@berkeley.edu
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Exercise 2.6 Find the pure strategy Nash equilibria on the game shown in Figure 2.1.

Solution. Denote Player 3 strategy by AB, where A is the action she plays after the history

Cd, and B is the action she plays after D. The strategic form of the game is (best responses

highlighted)

P1 plays C

P3

LL LR RL RR

P2 c 1,1,1 1,1,1 1,1,1 1,1,1

d 4,4,0 0,0,1 4,4,0 0,0,1

P1 plays D

P3

LL LR RL RR

P2 c 3,3,2 0,0,0 3,3,2 0,0,0

d 3,3,2 0,0,0 3,3,2 0,0,0

The Nash Equilibria are C, c, LR, C, c,RR, D, c, LL and D, c,RL. �

Exercise 2.7 Find the pure strategy Nash equilibria of the game shown in Figure 2.2.

0, 0 2, 1 1, 2

A

L R

B

1

2

Figure 2.2: (OR 96.2) A two player extensive game.

Solution. The strategic form of the game is (best responses highlighted)

P2

L R

P1 A 0,0 2,1

B 1,2 1,2

The NE are BL and AR. �

Exercise 2.10 Show that (when the game is extended to mixed strategies) every finite

extensive game with perfect information has a NE equilibrium.

Solution. For every finite extensive game with perfect information we can define it’s strategic

form using Definition 4.5 of the section notes (Definition 94.1 in OR). We know that the

strategic form has a NE. It is straightforward that this equilibrium is also a NE of the

extensive game. �
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Exercise 2.13 A childs action a (a number) affects both her own private income c(a) and

her parents’ income p(a); for all values of a we have c(a) < p(a). The child is selfish: she

cares only about the amount of money she has. Her loving parents care both about how

much money they have and how much their child has. Specifically, model the parents as

a single individual whose preferences are represented by a payoff equal to the smaller of

the amount of money they have and the amount of money the child has. The parents may

transfer money to the child. First the child takes an action, then the parents decide how

much money to transfer.

1. Show that in a subgame perfect equilibrium the child takes an action that maximizes

the sum of her private income and her parents income.

Solution. Given a child’s action a the parents’ problem is

max
t≥0

min{p(a)− t, c(a) + t} .

As p(a) > c(a), the optimal choice t?(a) satisfies

p(a)− t?(a) = c(a) + t?(a) =⇒ t?(a) =
c(a) + p(a)

2
.

Given the parents’ behavior, the child’s problem is

max
a

c(a) + t?(a) = max
a

c(a) + p(a)

2
.

Hence the child takes an action that maximizes the sum of her private income and

her parents income. �

2. Suppose c(a) = 1+2a−a2 and p(a) = 100+2a−a2 (so both payments are maximized

at a = 1). Construct a Nash equilibrium of this game in which the child chooses a = 2.

Solution. If a = 1 we have c(a) = 2 and p(a) = 101; if a = 2 we have c(a) = 1 and

p(a) = 100. Take the following strategy profile:

ã = 2 , t̃(a) =

{
99
2 if a = 2

0 otherwise.

It is easy to check that the strategy profile is a NE. �
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How to find the set of sequential equilibria This is a small description of the steps

I take to find the set of sequential equilibria. If is by no means the only form of doing it. I

like it because it is explicit and has a well-defined order. The steps are:

1. Define each player’s best response for each information set given the other player’s

strategies and the player’s belief at that information set.

2. For each region of beliefs in which players’ actions are the same, proceed by back-

wards induction to check that, when everyone is acting according to best responses,

beliefs do not contradict Bayes’ Rule. When Bayes’ Rule cannot be used (because the

computation yields a 0
0) no belief violates it.

3. For each case in the previous step for which everyone plays optimally (i.e., according

to their best responses) and beliefs do not contradict Bayes’ Rule, build a sequence of

assessments that satisfies consistency (make sure that all the strategies in the sequence

are completely mixed). If such sequence can be constructed, you found a sequential

equilibrium.

Exercise 2.24 Find the set of sequential equilibria of the game in Figure 4.8.

1, 1

3, 1 -2, 0 2, 0 -1, 1

L M R

` r ` r

1

2

Solution. First denote by γa the probability that Player 1 plays action a, and by δ the

probability that Player 2 plays `. The expected utilities are

u1(L) = 1, u1(M) = 5δ − 2, u1(R) = 3δ − 1; and

u2(`) = µ, u2(r) + 1− µ .

Hence Player 1 prefers to play L if δ ≤ 3/5 and M if δ ≥ 3/5 (R is never an option), and

Player 2 prefers to play ` if µ ≤ 1/2

We proceed by backwards induction and analyze sequential rationality for every possible

case of µ. Note that, when γM + γR > 0, Bayes Rule implies that

µ =
γM

γM + γR

1. If µ > 1/2 =⇒ P2 chooses ` (δ = 1) =⇒ P1 chooses M (γM = 1) =⇒ µ = 1

satisfies sequential rationality. X
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2. If µ < 1/2 =⇒ P2 chooses r (δ = 0) =⇒ P1 chooses L (γL = 1) =⇒ µ cannot be

computed using Bayes’ Rule. X

3. If µ = 1/2, there are two possibilities:

(a) γM = γR > 0. This is impossible as R is never a best response for Player 1.

(b) γM = γR = 0. In this case γL = 1, which only happens if δ ≤ 3/5, which is

coherent with µ = 1/2. X

Now we need to check consistency in each case. Let β denote the profile of behavioral

strategies, and take εk → 0.

1. µ = 1, β = ((0, 1, 0), (1, 0)): Take the following sequences

βk =
((
εk, 1− 2εk, εk

)
,
(

1− εk, εk
))

; and

µk =
1− 2εk

1− εk
.

As βk is completely mixed, βk → β, µk → µ, and µk is computed from βk using

Bayes’ Rule, then (β, µ) is a sequential equilibrium.

2. µ < 1/2, β = ((1, 0, 0), (0, 1)). Take the following sequences

βk =
((

1− 2εk − (εk)2, µεk + (εk)2, (1− µ)εk
)
,
(

1− εk, εk
))

; and

µk =
µ+ εk

1 + εk
.

As βk is completely mixed, βk → β, µk → µ, and µk is computed from βk using

Bayes’ Rule, then (β, µ) is a sequential equilibrium. The term (εk)2 ensures that the

strategy is totally mixed when µ = 0.

3.(b) µ = 1/2, β = ((1, 0, 0), (δ, 1− δ)) for δ ≤ 3/5. Take the following sequences

βk =
((

1− 2εk, εk, εk
)
,
(
δ + εk, (1− δ)− εk

))
; and

µk =
1

2
.

As βk is completely mixed, βk → β, µk → µ, and µk is computed from βk using

Bayes’ Rule, then (β, µ) is a sequential equilibrium.

�
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Exercise 2.25 Find the set of sequential equilibria of the Selten’s Horse

1, 1, 1

3, 3, 2 0, 0, 0 4, 4, 0 0, 0, 1

3

C c

D d

L R L R

1 2

Solution. Let δ1 be Player 1’s probability of playing C, δ2 Player 2’s probability of playing

c (conditional on reaching her information set), and δ3 Player 3’s probability of playing L

(conditional on reaching her information set). Also, denote by µ Player 3’s belief that the

history is D conditional on reaching her information set. The player’s expected utilities are

u1(D) = 3δ3, u1(C) = δ2 + 4δ3 − 4δ2δ3

u2(c) = 1, u2(d) = 4δ3

u3(L) = 2µ, u3(R) = 1− µ

hence Player 1 plays D if 3δ3 ≥ δ2 + 4δ3 − 4δ2δ3, Player 2 plays c if δ3 ≤ 1/4, and Player 3

plays L if µ ≥ 1/3. By Bayes’ Rule, whenever possible we have

µ =
1− δ1

1− δ1 + δ1(1− δ2)
.

We proceed by backwards induction and analyze sequential rationality for every possible

case of µ.

1. If µ > 1/3 =⇒ P3 chooses L (δ3 = 1) =⇒ P2 chooses d (δ2 = 0) =⇒ P1 chooses

C (δ1 = 1) =⇒ µ = 0, a contradiction.

2. If µ < 1/3 =⇒ P3 chooses R (δ3 = 0) =⇒ P2 chooses c (δ2 = 1) =⇒ P1 chooses

C (δ1 = 1) =⇒ µ cannot be computed using Bayes’ Rule. X

3. If µ = 1/3, there are two possibilities:

(a) 2(1− δ1) = δ1(1− δ2) > 0. This implies δ2 < 1 and δ1 ∈ (0, 1). δ2 < 1 is possible

since Player 3 is indifferent between actions. For δ1 ∈ (0, 1) we need Player 1 to

be indifferent between actions. This happens if

3δ3 = δ2 + 4δ3 − 4δ2δ3 ⇐⇒ δ2 =
δ3

4δ3 − 1
.
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For δ2 ∈ [0, 1] we need δ3 ≥ 1/3, But in this case Player 2 prefers to play d, hence

δ2 = 0, and δ3/4δ3−1 > 0. Therefore this situation is impossible.

(b) (1 − δ1) = δ1(1 − δ2) = 0. This implies δ1 = 1 and δ2 = 1. For δ2 = 1 we need

δ3 ≤ 1/4, and as δ2 = 1 for δ1 = 1 we need 3δ3 ≤ 1 + 4δ3 − 4δ3 ⇐⇒ δ3 ≤ 1/3.

Hence, this situation is possible with δ3 ≤ 1/4. X

Now we need to check consistency in each case. Let β denote the profile of behavioral

strategies, and take εk → 0.

2. µ < 1/3, β = ((1, 0), (1, 0), (0, 1)). Take the following sequences

βk =

((
1− εk, εk

)
,

(
1− εk(1− µ)

(1− εk)µ+ (εk)2
,

εk(1− µ)

(1− εk)µ+ (εk)2

)
,
(
εk, 1− εk

))
; and

µk =
(1− εk)µ+ (εk)2

1− εk + (εk)2
.

As βk is completely mixed, βk → β, µk → µ, and µk is computed from βk using Bayes’

Rule, then (β, µ) is a sequential equilibrium. The term (εk)2 assures that strategies

are well defined when µ = 0.

3.(b) µ = 1/3, β = ((1, 0), (1, 0), (δ3, 1− δ3)) with δ3 ≤ 1/4. Take the following sequences

βk =

((
1− εk, εk

)
,

(
1− 2εk

(1− εk)
,

2εk

(1− εk)

)
,
(
δ3 + εk, 1− δ3 − εk

))
; and

µk =
1

3
.

As βk is completely mixed, βk → β, µk → µ, and µk is computed from βk using

Bayes’ Rule, then (β, µ) is a sequential equilibrium.

�
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Exercise 2.26 Find the set of sequential equilibria of the following game.

1

L
M

R

1, 3

2

L
M
R L

M
R

0, 4 0, 1 4, 0 4, 0 0, 1 0, 4

Solution. Let δa denote Player 1’s probability of playing action a, and γa denote Player 2’s

probability of playing action a. Also, denote by µ Player 2’s belief that the history is M

when she has to play. Expected utilities are

u1(L) = 1, u1(M) = 4γR, u1(R) = 4γL

u2(L) = 4µ, u2(M) = 1, u2(R) = 4(1− µ)

Player 1 plays L if γR ≤ 1/4 and γL ≤ 1/4, plays M if γR ≥ 1/4 and γR ≥ γL, and plays R if

γL ≥ 1/4 and γL ≥ γR. Player 2 plays R if µ ≤ 1/2 and L if µ ≥ 1/2; playing M is never a

best response.

We proceed by backwards induction and analyze sequential rationality for every possible

case of µ.

- µ > 1/2 =⇒ P2 chooses L (γL = 1) =⇒ P1 plays R (δR = 1) =⇒ µ = 0, a

contradiction.

- µ < 1/2 =⇒ P2 chooses R (γR = 1) =⇒ P1 chooses M (δM = 1) =⇒ µ = 1, a

contradiciton.

- µ = 1/2. There are two possible cases:

1. δM = δR = 0. As M is never a best response for P2 (when µ = 1/2 P2 is

indifferent only between L and R), we must have γL + γR = 1. Hence we cannot

have γR ≤ 1/4 and γL ≤ 1/4. This implies δL = 0, a contradiction.

2. δM = δR > 0. As M is never a best response for P2, γM = 0. For P1 to be

indifferent between M and R (so δM , δR > 0) we need γL = γR. This implies

γL = γR = 1/2. In this case P1 is indifferent between M and R but L yields

strictly less utility, hence δM = δR = 1/2. X

As we have only one one candidate for sequential equilibrium and we know that a sequential
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equilibrium exists (Proposition 4.23 of the section notes), then this candidates has to be a

sequential equilibrium. The profile of behavioral strategies is β = ((0, 1/2, 1/2), (1/2, 0, 1/2)),

and the belief is µ = 1/2. To build a sequence, take εk → 0 and define

βk =

((
εk,

1

2
− εk, 1

2

)
;

(
1

2
− εk, εk, 1

2

))
; and

µk =
1− εk

2(1− εk)
.

�



Section 3 : Repeated Games

Cristián Ugarte C. cugarte@berkeley.edu

These notes are based in the corresponding chapters of Martin Osborne and Ariel Rubinstein’s book “A Course

in Game Theory”, which I refer to as OR. Some ideas were also taken from Martin Osborne’s book “An

introduction to Game Theory”, which I refer to as O.

Summary

In this section we study repeated games. The main insight from these types of games is

that a player’s present behavior may affect other players’ future behavior, which can work

as a commitment mechanism. In repeated games, players may choose some actions that are

not part of the best response of the strategic game in order to avoid other players’ behavior

in the future.

3.1 Repeated Games

The idea of studying repeated games is to examine the logic on long-term interaction. While

in games that are played only once a players can react to other players’ actions only during

the game, in repeated games this reaction can happen in future versions of the game.

We will study repeated games by a mixture between general definitions and applications to

the repeated prisoner’s dilemma. The one-time version of this game is shown in Figure 3.1,

and has D,D as its unique Nash Equilibrium.

C D

C 3,3 0,4

D 4,0 1,1

Figure 3.1: The prisoner’s dilemma.

3-1

mailto:cugarte@berkeley.edu
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3.1.1 Setup

Recall that an N -player game with perfect monitoring is a tuple G = 〈N, (Ai)i∈N , (ui)i∈N 〉,
where N is a set of players, Ai is the set of Player i’s actions (with A = ×i∈NAi) and

ui : A → R represent Player i’s preferences over profiles of actions. A repeated game is a

game G that is played repeatedly over time.

To define preferences over games that are played repeatedly, we assume that there is a

common discount factor δ ∈ (0, 1). Then for any stream of payoffs (ωt)
T
t=1 (where T ∈

N ∪ {∞}), each player’s preferences over streams are represented by the discounted sum

V = (1− δ)
T∑
t=1

δt−1ωt .

Given this, we define a repeated game as follows.

Definition 3.1. Given the strategic game G and a discount factor δ

- For T ∈ N, a T-period repeated game of G, denoted Gδ(T ), is an extensive game

with perfect information and simultaneous moves 〈N,H,P, (ui)i∈N 〉 in which

- H = {∅} ∪
(
∪Tt=1A

t
)
;

- P (h) = N for any h ∈ H \ Z; and

- ui = (1− δ)
∑T

t=1 δ
t−1uti, where uti is the utility of Player i from the game player

in period t.

- An infinitely repeated game of G, denoted Gδ(∞), is an extensive game with

perfect information and simultaneous moves 〈N,H,P, (ui)i∈N 〉 in which

- H = {∅} ∪
(
∪t∈NAt

)
∪ A∞, where A∞ is the set of infinite sequences of action

profiles;

- P (h) = N for any h ∈ H \ Z; and

- ui = (1− δ)
∑∞

t=1 δ
t−1uti, where uti is the utility of Player i from the game player

in period t.

We define strategies in the usual way

Definition 3.2. Given a game Gδ(T ) (Gδ(∞)) and i ∈ N , Player i’s strategy is a behav-

ioral strategy σi = (σti)
T
t=1 (σi = (σti)t∈N ) where σ1i ∈ ∆Ai and for any t > 1

σti : (As)t−1s=1 → ∆Ai,

where As ∈ A is the profile of actions taken in period s < t.
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3.1.2 Strategies as Machines

Although strategies can be very complex in this setting, we can develop a language in which

to describe conveniently the structure of the equilibria that we find. Specifically, we can

think of strategies as machines (or automaton) who prescribe decisions according to simple

rules.

Definition 3.3. Given Gδ(T ) (Gδ(∞)) a machine has the following components

- a set Qi (the set of states);

- an initial state q0i ∈ Qi;
- a output function fi : Qi → Ai that assigns a function to every state; and

- a transition function τi : Qi × A → Qi, that assigns a state to every pair consisiting

of a state and an action profile.

The idea is the following. There is an unrestricted set of states Qi and an initial state

q0i ∈ Qi. Then, in the first period the machine chooses fi(q
0
i ). Given the action profile in

the first period a0, the state changes to q1i = τi(q
0
i , a

0). Then machine chooses fi(q
1
i ) in the

next period, the state updates again, and so on.

Exercise 3.4. Take the repeated prisoner’s dilemma, and define the following strategies:

- Grim Trigger : Play C as long as the other player has always played C in the past. If

not, play D.

- Limited punishment (k periods): Start playing C and after play C if the other player

played C in the previous period. If the other player plays D, then play D for the next

k periods. Then start again.

- Tit-for-tat : Play C in the first period. Then in every period mimic the action the

other played in the previous period.

Define machines describing these strategies.

3.1.3 Folk Theorem for Repeated Games

Machines are useful not only because they allow us to describe strategies but also because

simple machines help us prove what are called “Folk Theorems”. Folk theorems describe

the set of possible equilibrium payoffs in repeated games. Here we focus on one specific

Folk Theorem, which we will show applied to the prisoner’s dilemma.

For a finitely repeated prisoner’s dilemma, the Folk theorem is a negative result: we cannot

escape from the unique (and suboptimal) Nash equilibrium. This result hold for any game

with a unique Nash equilibrium.
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Proposition 3.5. If the strategic game G has a unique Nash equilibrium payoff profile,

then for any T ∈ N, the action profile chosen after any history in any subgame perfect

equilibrium of Gδ(T ) is the Nash equilibrium of G.

Proof. The outcome in any subgame that starts in period T of any subgame perfect equi-

librium of Gδ(T ) is the Nash equilibrium of G. Thus each player’s payoff in the last period

of the game is independent of history. Consequently in any subgame that starts in period

T − 1 the action profile is a Nash equilibrium of G. An inductive argument completes the

proof.

This result basically tells us that there are not any changes in behavior in finitely repeated

games when the static game has a unique Nash equilibrium. The reason is that the unique-

ness of the Nash equilibrium makes last period’s payoffs independent of the history, which

also makes the second-to-last period payoffs independent of the history, and so on.

The Folk theorem for infinitely repeated games tells us a story completely different than

the one in finitely repeated games. Before establishing the theorem we need the following

auxiliary result.

Lemma 3.6. A strategy profile is a subgame perfect equilibrium of Gδ(∞) if and only if no

player can gain by deviating in a single period after any history.

Proof. Let s be a strategy profile and (vt)t∈N be the infinite sequence of payoffs induced by

s. Also, let

Ui(s) = (1− δ)
∞∑
t=1

δt−1vti ;

and for any history h = (ai, . . . , aT ), let

Wi(s, h) = (1− δ)
∞∑
t=1

δt−1ui(a
T+t) ,

where (aT+t)t∈N is induced by s. That is, Wi(s, h) is Player i’s payoff following history h

given the strategy profile s.

If a player can gain by a one-period deviation then the strategy profile is obviously not a

subgame perfect equilibrium.

Now assume that no player can gain by a one-period deviation from s after any history but

there is a history h after which Player i can gain by switching to the strategy s?i . Without

loss of generality assume that h = ∅. As δ < 1 there is some period T such that the strategy

that follows s?i until T and then follows si is still a profitable deviation for Player i, call

this strategy s′i and s′ = (s′i, s−i). As h = ∅, we have that Ui(s
′) > Ui(s).
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Let ht = (a1, . . . , at) be the sequence of outcomes of G induced by s′ in the first t periods

of the repeated game. Then we have

Ui(s
′) = (1− δ)

T∑
t=1

δt−1ui(a
t) +Wi(s, h

T )

Now, since no player can gain by deviating in a single period after any history, Player i

cannot gain by deviating from si in the first period of the subgame that follows the history

hT−1. Thus

Ui(s
′) ≤ (1− δ)

T−1∑
k=1

δt−1ui(a
t) +Wi(s, h

T−1) .

Now take the strategy s′′ that follows s′ until T − 1 and after that follows s. Note that

Ui(s
′′) = (1− δ)

T−1∑
k=1

δt−1ui(a
t) ,

so Ui(s
′′) ≥ Ui(s′). However, as Player i cannot gain by deviating from si in the first period

of the subgame that follows the history hT−2 (i.e., s′′ is not a profitable deviation) we have

that

Ui(s
′′) ≤ (1− δ)

T−2∑
k=1

ui(a
t) +Wi(s, h

T−2) .

Therefore

Ui(s) ≤ (1− δ)
T−2∑
k=1

ui(a
t) +Wi(s, h

T−2) .

Continuing to work backwards period by period leads to the conclusion that

Ui(s
′) ≤Wi(s, ∅) = Ui(s) .

Contradicting the assumption that s′i is a profitable deviation for Player i.

A candidate for a Folk theorem would be one in which any payoff that comes from a profile

of actions is available. However, this is clearly not the case. Take for example the prisoner’s

dilemma, and suppose we want to generate the payoffs coming from the action profile C,D,

which yields a payoff of 0 to Player 1. Then Player 1 can increase her payoff by switching to

D, even if Player 2 punishes that change by deviating to C. In the worst possible scenario,

Player 1 can still achieve a payoff of 1. We formalize this idea introducing the minmax

payoff of Player i by

vi = min
a−i∈A−i

max
ai∈Ai

ui(ai, a−i) . (3.1)
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We say that a payoff profile w = (wi)i∈N is enforceable if wi ≥ vi for every i ∈ N , and

strictly enforceable if wi > vi for every i ∈ N . Nop we establish the main result of this

part of the materials.

Theorem 3.7. Let (w1, w2) be a strictly enforceable payoff profile derived from a profile of

actions a? = (a?1, a
?
2). then there exists a δ ∈ (0, 1) such that for all δ > δ there is a subgame

perfect equilibrium of Gδ(∞) in which the discounted average payoffs of each Player i is ui.

Proof. For each Player i, take Player i′sminmax action bi ∈ arg minai∈Ai
maxa−i∈A−i u−i(ai, a−i).

Now consider the following strategy σi for Player i: “Start playing a?i , and continue to use

it as long as both the profile of actions is a? in every period. If not, play bi.”

Let a′i be the one-time best response to a?−i, i.e., a′i ∈ arg maxai∈Ai
ui(ai, a

?
−i), and let

w′i = maxai∈Ai ui(ai, a
?
−i). Now take the one-time deviation for Player i of playing w′i in

period t and σi afterwards, and wothout loss of generality set t = 1. The payoff from this

deviation is

(1− δ)ui(a′i, a?−i) + δ(1− δ)
∞∑
t=2

δt−1vi = (1− δ)w′i + δvi ,

where vi is defined in (3.1). Then Player i has no incentive to deviate if

wi ≥ (1− δ)w′i + δvi ⇐⇒ δ ≥ w′i − wi
w′i − vi

.

Define

δ = min
i=1,2

w′i − wi
w′i − vi

Since (w1, w2) is strictly enforceable, it is clear that δ < 1.

The last part to check that σ = (σ1, σ2) is a subgame perfect equilibrium with the desired

payoffs is to check that there are no one-time profitable deviations after any history, which

is left as an exercise.

This result states the set of payoffs that can be sustained by a subgame perfect equilibrium.

This set is the set of strictly enforceable payoffs that come from a profile of actions. Using

mixed strategies (and a public randomization device) we can also achieve convex combina-

tions of these payoffs. Moreover, this result can also be extended to games with more than

two players (after some technical assumptions), but these results are outside of the scope

of the course.

We finish this section with an exercise.
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Exercise 3.8 (O 443.1). (Delayed modified grim trigger strategies) Choose a positive integer

k and consider the strategy that chooses D in the first k periods of the game, regardless of

the history, and then follows the modified trigger strategy, starting in state C, where the

modified trigger strategy is defined as follows.

- Qi = {C,D};
- q0i = C;
- fi(C) = C, fi(D) = D; and

- τi(C, (C,C)) = C, τi(X , (X,Y )) = D for any (X , (X,Y )) 6= (C, (C,C)).

Find a range of values for the discount factor for which the strategy profile in which each

player uses this strategy is a subgame perfect equilibrium.
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Suggested Solutions

Cristián Ugarte C. cugarte@berkeley.edu

Exercise 3.4 The machines can be defined as follows (for each a ∈ A, the first action

represents my action and the second one the action of the other player):

- Grim Trigger:

- Q = {q1, q2};
- initial state is q1;

- f(q1) = C, f(q2) = D; and

- τ(q1, (·, C)) = q1, τ(q1, (·, D)) = q2, and τ(q2, a) = q2 for every a ∈ A
- Limited Punishment:

- Q = {q0, q1, . . . , qk};
- initial state is q0;

- f(q0) = C, f(qi) = D for i = 1, . . . , k; and

- τ(q0, (·, C)) = q0, τ(q0, (·, D)) = q1, τ(qi, a) = qi+1 for every a ∈ A and i ∈
{1, . . . , k − 1}, and τ(qk, a) = q0 for every a ∈ A.

- Tit-for-tat:

- Q = {q1, q2};
- initial state is q1;

- f(q1) = C, f(q2) = D; and

- τ(q, (·, C)) = q1 and τ(q, (·, D)) = q2 for every q ∈ Q.

Exercise 3.8 Any deviation to C at the start of a subgame following a history of length

k − 1 or less reduces a player’s payoff and has no impact on the subsequent outcomes. No

deviation in the first period of a later subgame is profitable if and only if δ ≥ 1/2, by the

argument for the modified grim trigger strategy. Thus the strategy pair is a subgame perfect

equilibrium if and only if δ ≥ 1/2.
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These notes are based in the corresponding chapters of Martin Osborne and Ariel Rubinstein’s book “A Course

in Game Theory”, which I refer to as OR. Some ideas were also taken from Martin Osborne’s book “An

introduction to Game Theory”, which I refer to as O.

Summary

In this section we study the problem of bargaining, focusing on the case with only two

parts. The idea is simple: there is a set of possible outcomes and players’ preferences over

those outcomes are not aligned. The typical example is when players have to split a dollar.

The main question is to select which outcome(s) seem reasonable. We take two different

approaches to solve this problem: the axiomatic approach and the strategic approach.

4.0 Motivation

The main problem about the study of bargaining is that a general approach to the problem

may be insufficient. We show it in the following exercise.

Exercise 4.1. Suppose two players, which we call 1 and 2, play the following strategy

game. Player 1 chooses a number x ∈ [0, 1] and Player 2 simultaneously chooses a number

y ∈ [0, 1]. If x + y ≤ 1 then Player 1 receives x and Player 2 receives y; if x + y > 1 then

both players get zero. Show that any combination (x?, y?) satisfying x? + y? = 1 is a Nash

Equilibrium.1

1 It is possible to show that refinements as trembling hand perfection or evolutionary stability do not
reduce the set of Nash equilibria.

4-1
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4.1 The Axiomatic Approach

The axiomatic approach to bargaining dates back to Nash’s (1950)2 seminal paper. This

approach starts from a very general bargaining problem. Then introduces some proper-

ties (axioms) for the bargaining outcome that seem “reasonable” to study which how to

characterize the outcomes that satisfy such properties.

4.1.1 Setup

A bargaining situation is defined as follows.

Definition 4.2. A bargaining situation is a tuple 〈N,A,D, (%i)i∈N 〉 where

- N is a set of players

- A is a set of outcomes/agreements

- D is a disagreement outcome

- %i is Player i’s preference relation on lotteries over A ∪ {D}.

The idea of the problem is that players have to all agree over an outcome a ∈ A, and if

someone disagrees about it then the outcome is D.

We simplify our lives by making the following assumptions

Assumption 4.3. There are only two players, i.e., N = {1, 2}.

Assumption 4.4. %i has an expected utility representation for every i ∈ N .

Assumption 4.3 is just to simplify the notation and exposition. As in several settings, we

can restrict our focus to situations with only two players without loosing insight about the

results.

Assumption 4.4 implies that for each player there is a Bernoulli function ui : A∪{D} → R.

This allow us to simplify the exposition of the bargaining situation and to make it easier to

study. In particular, for each possible outcome a ∈ A we can define a vector (u1(a), u2(a)),

and similarly we can define the vector (u1(d), u2(d)). By doing this, we move from an

abstract set of alternatives A to the set of utilities.

In simple, instead of focusing on outcomes, we think of bargaining as players choosing a

pair of payoffs (s1, s2) ∈ S, where the set S is given by

S =
{

(s1, s2) ∈ R2 : s1 = u1(a) and s2 = u2(a) for some a ∈ A
}
.

2 Nash Jr, J. F. (1950). The bargaining problem. Econometrica: Journal of the econometric society,
155-162.
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If players disagree, their payoffs are given by d = (u1(D), u2(D)). Note that this simplified

situation in which we look only at the sets S and d still contains all the relevant information

about the bargaining situation. In what follows we will study the axiomatic approach to

bargaining by looking only at these two sets.

We make some structural assumptions about the pairs of utilities than can be obtained in

equilibrium.

Assumption 4.5. S is a compact and convex set.

The assumption of compactness makes the situation easier to study. Recall that a set is

compact if and only if it is closed and bounded.

- As the set is closed we have that limits are achievable, so we will never want to get

“very” close to a point that is not in S.

- As the set is bounded no player will get infinite utility.

The assumption about convexity is more technical. With this assumption we define a

bargaining problem.

Definition 4.6. A bargaining problem is a pair 〈S, d〉, where S is a convex and compact

subset of R2, d ∈ S, and there is s ∈ S satisfying s� d.3

The set of all bargaining problems is denoted by B. A couple of comments about the

previous definition.

- A bargaining problem does not care about what the options are, only about the

achievable set of payoffs.

- There is an outcome that both players prefer over the disagreement.

It will be useful to study a particular case of bargaining problems

Definition 4.7. A bargaining problem 〈S, d〉 is symmetric if

1. d1 = d2; and

2. (s1, s2) ∈ S ⇐⇒ (s2, s1) ∈ S.

4.1.2 Nash’s Axioms and Solutions

Our approach here is, instead of modeling specific characteristics of a bargaining problem,

to study the solution of the abstract bargaining problem. Specifically, for every problem we

look a solution.

3 For two vectors x = (x1, x2) and y = (y1, y2) we write x � y whenever x1 > y1 and x2 > y2.
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Definition 4.8. A bargaining solution is a function f : B → R2 satisfying f(〈S, d〉) ∈ S.

Simply, a bargaining solution takes a bargaining problem 〈S, d〉 and returns a unique out-

come of that problem.

Given the generality of our bargaining problem, we look for properties (axioms) that seem

general enough such that they should hold for every problem. Then we ask for the solution

to have these properties. Nash’s original axioms are:

(INV ) Invariance to equivalent utility representations For i = 1, 2 take αi > 0 and

βi ∈ R, and define the bargaining problem 〈S′, d′〉, where

S′ = {(α1s1 + β1, α2s2 + β2) : (s1, s2) ∈ S} ; and

d′ = (α1d1 + β1, α2d2 + β2) .

Then for i = 1, 2 we have fi(〈S′, d′〉) = αifi(〈S, d〉) + βi.

The idea of this axiom is that, as utilities are only ordinal representations, monotone

transformations of the utility function should not affect the outcome (we focus only

on affine transformations to keep convexity).

(SYM) Symmetry If 〈S, d〉 is symmetric, then f1(〈S, d〉) = f2(〈S, d〉).
Intuitively if both players are equal we have no reason to favor one over the other.

(IIA) Independence of Irrelevant Alternatives If 〈S, d〉 and 〈T, d〉 are bargaining prob-

lems such that S ⊂ T and f(〈T, d〉) ∈ S, then f(〈S, d〉) = f(〈T, d〉).
Intuitively, as long as the chosen outcome remains available, removing alternatives

that were not chosen should not change which one we choose.

(WPO) Weak Pareto Efficiency If s, t ∈ S and t� s, then f(〈S, d〉) 6= s.

This axiom tells us that players will not choose an outcome if there is another one in

which both are be strictly better.

These four axioms are the ones that Nash proposed to construct a solution to the bargaining

problem. Before doing that, we show the following result.

Exercise 4.9. Show that INV implies that it is without loss of generality to restrict B to

problems 〈S, d〉 where (1) d = (0, 0), (2) S ⊂ R2
+, and (3) S ∩ R2

++ 6= ∅.

(Given this result, in what follows we refer to B as the set of bargaining problems satisfying

these properties)
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Using the previous four axioms Nash proposed the following solution.

Proposition 4.10. The unique bargaining solution satisfying INV , SYM , IIA and WPO

is

fN (〈S, d〉) = arg max
(s1,s2)∈S

s1 s2 .

We call fN the Nash’s solution.

We will prove this result in two steps.

Exercise 4.11. Show that fN is a well defined bargaining solution (this is, that fN is a

function from B to R2 where f(〈S, d〉) ∈ S).

Exercise 4.12. Show that fN is the unique bargaining solution satisfying INV , SYM ,

IIA and WPO.
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4.1.3 Alternative Axioms and Solutions

Although the four axioms presented before may seem reasonable, alternatives have been

proposed. In particular, the IIA axiom is specifically problematic. This axiom has been

object of debate also in other settings, for example in social choice theory.4

In particular, two alternatives have been proposed to IIA. They are

(INM) Individual monotonicity For i = 1, 2 define s̄i = maxs∈S si. Then

1. For any 〈S, d〉 and 〈T, d〉 with S ⊂ T and s̄i = t̄i for i = 1, 2, then for i = 1, 2 we

have fi(〈S, d〉) ≤ fi(〈T, d〉).
2. For any 〈S, d〉 and 〈T, d〉 with S ⊂ T and s̄i = t̄i for some player i, we have that

fj(〈S, d〉) ≤ fj(〈T, d〉) for j 6= i.

In the word of Kalai and Smorodinsky (who proposed this axiom), the idea is that “If,

for every utility level that Player i may demand, the maximum feasible utility level

that Player j can simultaneously reach is increased, then the utility level assigned to

Player j according to the solution should also be increased”.

(STM) Strong Monotonicity For any 〈S, d〉 and 〈T, d〉 with S ⊂ T we have

fi(〈S, d〉) ≤ fi(〈T, d〉)

for i = 1, 2.

In simple, if we add alternatives then players should not be worst off.

IIA can be replaced by these axioms, reaching the following results.

Proposition 4.13. The unique bargaining solution satisfying SYM , WPO, INV and

WMO is

fKS(〈S, d〉) =

{
s ∈ S :

s1
s̄1

=
s2
s̄2

}
∩WPO(S) .

Where WPO(S) = {s ∈ S : t � s =⇒ t /∈ S}. We call fKS the Kalai-Smorodinsky

solution.

Proposition 4.14. The unique bargaining solution satisfying SYM , WPO, and STM is

fK(〈S, d〉) = {s ∈ S : s1 = s2} ∩WPO(S) .

We call fK the Kalai solution.

4 See for example Eric Maskin’s working paper “Arrow’s Theorem, May’s Axioms, and the Borda Rule”.
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Since time is limited we will not go through the proofs of these results (they are available in

the lecture slides). An interesting comment about the Kalai-Smorodinsky solution is that

only the first part of the INM axiom is necessary for the result. Moreover, the second

condition implies the first one, so we only need one of the two. We present both conditions

here because while the first one is weaker (and hence the second is not necessary), the

second one is the original one proposed by Kalai and Somorodinsky.

We finish this section with some exercises.

Exercise 4.15 (2019 Midterm). Show that in the standard Nash bargaining problem WPO

can be replaced with SIR.

(SIR) Strict Individual Rationality In any bargaining problem 〈S, d〉 we have f(S, d)� d.

That is, the Nash bargaining solution

fN (S, d) = arg max
s∈S
s≥d

(s1 − d1)(s2 − d2)

is the only solution satisfying SYM , SIR, INV and IIA (it is sufficient to show that these

four axioms are equivalent to the standard axioms SYM , WPO, INV and IIA).
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Exercise 4.16 (2016 Midterm). Let B be the set of all convex, compact and comprehensive

sets in R2
+ with nonempty intersection with R2

++.

1. Show that the Kalai bargaining solution fK(〈S, d〉) does not satisfy INV .

2. Show that the Kalai-Smorodinsky bargaining solution fFS does not satisfy IIA.
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4.2 The Strategic Approach

4.2.1 Setup

In the strategic approach we model bargaining as a game of alternating offers between

players. For simplicity we assume there are two players, and we call the set of agreements

X, which we assume is given by

X = {(x1, x2) ∈ R2
+ : x1 + x2 = 1} .

The game has essentially two stages, that we call (I) and (II), which repeat over time. It

starts at t = 0 in stage (I), and proceeds as follows.

(I) Player 1 makes an offer x ∈ X. Player 2 can either Accept or Reject x. If Player 2

chooses A then the game ends, and the agreement is x. If Player 2 rejects we move

one period forward and a subgame starts at (II).

(II) Player 2 makes an offer y ∈ X. Player 1 can either Accept or Reject y. If Player 1

chooses A then the game ends, and the agreement is y. If Player 1 rejects we move

one period forward and a subgame starts at (I).

If no player never accepts, then the outcome is D. We denote by T the set of possible times;

this is, T is the set of nonnegative integers. We assume that time is relevant for players; this

is, players have preferences over pairs (x, t) ∈ X × T . We also make several assumptions

about the players’ preferences.

Assumption 4.17. For every Player i = 1, 2, alternatives x, y ∈ X, and times t, s ∈ T we

have

(A1) (x, t) %i D ;

(A2) (x, t) %i (y, t) ⇐⇒ x ≥ y;

(A3) (x, t) %i (x, t+ 1), with strict preference if (x, 0) �i D;

(A4) If there are sequences xn, yn ∈ X such that xn → x, yn → y, and (xn, t) %i (yn, s) for

all n, then (x, t) %i (y, s); and

(A5) (x, t) %i (y, t+ 1) ⇐⇒ (x, 0) %i (y, 1).

Our assumptions have several implications regarding the properties and representation of

the players’ preferences. Since this is a course on gme theory, not choice theory, we will

only state these results.

Lemma 4.18. Under assumptions A2 to A4, for i = 1, 2 and any (x, t) ∈ X × T there is

at most one y ∈ X satisfying (y, 0) ∼i (x, t). If no such y exists, then (z, 0) �i (x, t) for all

z ∈ X.
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Lemma 4.19. Under assumptions A2 to A5, for i = 1, 2 and every δ ∈ (0, 1) there exists a

continuous and increasing function ui : X → R such that Ui(x, t) = δtui(xi) represents %i.

In particular, Lemma 4.19 implies that, if we allow for u1 6= u2, to set the same discount

factor for both players is without loss of generality.

Given that for each Player i the utility representation can be thought as a function of only

xi and T (even before Lemma 4.19), we will write down Player i’s utility as a function of

only xi and t. Graphically the game is (with t even)

t− 1 t t+ 1 t+ 2

δtu1(x1), δ
tu2(x2) δt+1u1(y1), δ

t+1u2(y2)

x ∈ X y ∈ X

A

R

A

R1 2 2 1

We add an additional assumption that allows us to uniquely pin down the equilibrium of

the game.

Assumption 4.20. For every Player i = 1, 2 and alternative x ∈ X define the cost of delay

as x− u−1i (δu1(x)),

(A6) the cost of delay is an increasing function of xi.

Lemma 4.21. Under assumptions A2 to A6 there is a unique pair of agreements x?, y?

such that

(x?, t) ∼2 (y?, t+ 1) and (y?, t) ∼1 (x?, t+ 1) .

In other words, this pair satisfies u2(x
?
2) = δu2(y

?
2) and u1(y

?
1) = δu1(x

?
1).

4.2.2 Subgame Perfect Equilibrium

Our assumptions imply that the game has a unique SPE

Proposition 4.22 (OR 122.1). Let x?, y? be the agreements defined in Assumption A6.

Under assumptions A1 to A6 the bargaining game with alternating offers has a unique

SPE. The strategies in the SPE are stationary and given by

- Player 1 always proposes the agreement x? and accepts y if and only if y1 ≥ y?1.

- Player 2 always proposes the agreement y? and accepts x if and only if x2 ≥ x?2.
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We will only prove that the strategy profile is a SPE, but not that it is unique (the proof

is included in the notes for the interested reader).

Exercise 4.23. Show that the strategy profile described in Proposition 4.22 is a SPE.
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Proof of Uniqueness in Proposition 4.22. To see why the SPE is unique, first define, for

i = 1, 2, the game Gi as the subgame starting at the node at which Player i has to make

an offer. Also define the payoffs

Mi = sup{δtui(x) : (x, t) is the outcome of a SPE of Gi}; and

mi = inf {δtui(x) : (x, t) is the outcome of a SPE of Gi} .

Without loss of generality we normalize u1(0) = u2(0) = 0. We prove the result in three

steps:

1. M1 = m1 = u2(x
?
1), and M2 = m2 = u2(y

?
2): We make the argument for Player 1; the

argument for Player 2 is analogous. Now suppose we are at game G1 and Player 1

offers x.

- It is clear that Player 2 will accept x if u2(x2) > δM2. Hence Player 1 can assure

she will obtain a share of the pie equal to 1− u−12 (δM2).

m1 ≥ u1
(
1− u−12 (δM2)

)
m2 ≥ u2

(
1− u−11 (δM1)

) (4.1)

- Also, Player 2 will reject any offer x if u2(x2) < δm2. Note that if Player 2 gets

a utility δm2, Player 1 gets a utility no greater than u1
(
1− u−12 (δm2)

)
,5

M1 ≤ u1
(
1− u−12 (δm2)

)
M2 ≤ u2

(
1− u−11 (δm1)

) (4.2)

- We show that M1 = u(x?1). As we have shown that the strategy profile in

Proposition 4.22 is a SPE (Exercise 4.23), we have that M1 ≥ u1(x
?). Now

towards a contradiction suppose M1 > u1(x
?
1), i.e., x?1 < u−11 (M1). We have that

x?1 < u−11 (M1)

≤ u−11

(
u1

(
1− u−12 (δm2)

))
(by (4.2) for M1)

= 1− u−12 (δm2) (since u−11 (u1(x)) = x)

≤ 1− u−12

(
δu2

(
1− u−11 (δM1)

))
(by (4.1) for m2)

Now define the function f : [0, 1]→ R by f(x1) = 1−u−12

(
δu2

(
1− u−11 (δu1(x1))

))
.6

This function is continuous, decreasing, and satisfies f(1) < 1 and f(x?1) > x?1
(since u1(x

?
1) < M1). Hence there is a value x̂1 such that x̂1 = f(x̂1). De-

5 To see this note that utilities are rival in the share of the pie; this is, to increase one Player’s share,
and her utility, decreases the other player’s utility (for a given period).

6 Although this function looks like it comes out of nowhere, it is based on the right hand side of the
previous inequality, by noticing that M1 is a utility of Player 1.
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fine x̂ = (x̂1, 1 − x̂1), and ŷ satisfying (x̂, 0) ∼2 (ŷ, 1). This implies that

u2 (1− x̂1) = δu2(1 − ŷ1). Replacing the value of x̂1 and after some (simple)

algebra we conclude that ŷ1 = u−11 (δu1(x̂
1)). This implies that u1(ŷ1) = δu1(x̂1),

so (ŷ, 0) ∼1 (x̂, 1). Hence we have that x̂ 6= x? (as x̂1 > x?), (x̂, 0) ∼2 (ŷ, 1), and

(ŷ, 0) ∼1 (x̂, 1). This contradicts Lemma 4.21. We conclude that M1 = u1(x
?).

- That m1 = u1(x
?
1) and M2 = m2 = u2(y

?
2) can be proved analogously.

2. In every SPE of G1 Player 1’s initial proposal is x? which is accepted by Player 2:

First suppose Player 2 rejects the initial offer. Then we move to G2, in which Player

2’s payoff is δu2(y
?
2) and Player 1’s payoff is δu1(y

?
1) < u1(y

?
1) < u1(x

?
1) (the last

inequality because u1(y
?
1) = δu1(x

?
1)). Hence in any SPE Player 2 accepts the first

offer. As M1 = u1(x
?
1) the offer has to be x?. Similarly we can show that in every

SPE of G2 Player 2’s initial proposal is y? which is accepted by Player 1.

3. In any SPE of G1 Player 2 accepts an offer x if and only if x2 ≥ x?2: Player 2’s rejection

leads to G2, whose present value is δu2(y
?
2). By the previous step we know that Player

2 accepts x?. By the one deviation property is clear that she accepts any offer with

x2 > x?2 and rejects any offer with x2 < x?2. Similarly we can show that in every SPE

of G1 Player 1 accepts an offer y if and only if y1 ≥ y?1.

Properties of the SPE The SPE of the game presents the following properties:

- Stationarity : The SPE strategies do not depend on the history: at the beginning of

any subgame at which a player has to make an offer she makes the same offer, and at

the beginning of any subgame at which a player has to accept or reject an offer she

follows the same rule.

- First Mover Advantage: Player 1 has an advantage for moving first. Intuitively Player

2 will accept any initial offer as long at its value is higher than the value of moving

forward. Player 1 uses this to offer the smallest amount that Player 2 will accept.

- Patience is good : Given two preferences %,%′ over X × T , we say that % is less

patient than %′ is whenever (y, 0) ∼′ (x, 1) we have that (y, 0) % (x, 1). When a

player becomes less patient and has not the advantage of moving first her share of the

pie decreases in equilibrium.
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We finish the study of the strategi approach to bargaining with an exercise.

Exercise 4.24. Two pirates are bargaining about how to split a treasure worth 1. They

both have the same discount factor δ ∈ (0, 1)

1. Consider the following situation

- In the first round Pirate 1 has to offer Pirate 2 a share of the treasure x.

- If Pirate 2 accepts Pirate 1’s offer, she gets x and Pirate 1 gets 1− x.

- Instead of accepting, Pirate 2 can make a counteroffer y to Pirate 1.

- If Pirate 1 accepts the counteroffer she gets y and Pirate 2 gets 1− y delayed by

one period.

- If Pirate 1 rejects Pirate 2’s counteroffer they both get zero.

Model this game as an extensive game using a tree and find the SPE of the game.

2. Now assume that after Pirate 2’s offer, Pirate 1 can make another counteroffer. If

Pirate 2 accepts such counteroffer the respective payments are delayed by an extra

period ; if not, they both get zero. Model this game as an extensive game using a tree

and find the SPE of the game.
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3. According with your previous results, what can you say with respect to the effects on

bargaining power of starting and finishing the game?
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Suggested Solutions

Cristián Ugarte C. cugarte@berkeley.edu

Exercise 4.9 how that INV implies that it is without loss of generality to restrict B to

problems 〈S, d〉 where (1) d = (0, 0), (2) S ⊂ R2
+, and (3) S ∩ R2

++ 6= ∅.

Solution. Take any bargaining problem 〈S, d〉. By using α1 = α2 = 1, β1 = d1, and β2 = d2
in the definition of INV we have a new problem 〈S′, d′〉 where d′ = (0, 0). Finally, as there

is s′ ∈ S′ satisfying s′ � (0, 0) it is clear that S′ ∩ R++ 6= ∅. Finally, it is clear that any

point s ∈ S \R+ is irrelevant as at least one player prefers the disagreement to any of these

points. �

Exercise 4.11 Show that fN is a well defined bargaining solution (this is, that fN is a

function from B to R2 where f(〈S, d〉) ∈ S).

Solution. Since S is compact and s1s2 is continuous a maximizer exists. Moreover, as S is

convex and s1s2 is strictly quasiconcave this maximizer is unique. �

Exercise 4.12 Show that fN is the unique bargaining solution satisfying INV , SYM ,

IIA and WPO.

Solution. Suppose there is another solution f 6= fN satisfying these axioms, call if f . Let

S′ =

{(
s1

fN1 (〈S, d〉)
,

s2

fN2 (〈S, d〉)

)
: (s1, s2) ∈ S

}
.

We have that s′1s
′
2 ≤ 1 for all s′ ∈ S′, so fN (〈S′, d〉) = 1, 1.

Since S is convex S′ also is, and hence is contained in the set T = {x ∈ R2
+ : x1 + x2 ≤ 1}.

- By WPO and SYM we have that f(〈T, d〉) = (1, 1);

- as (1, 1) ∈ S′ and S ⊂ T by IIA we have f(〈S′, d〉) = (1, 1);

- Finally, by INV for i = 1, 2 we have fi(〈S, d〉) = fNi (〈S, d〉)fi(〈S′, d〉) = fNi (〈S, d〉).

Hence f = fN , a contradiction. �

4-1
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Exercise 4.15 Show that in the standard Nash bargaining problem WPO can be replaced

with SIR.

(SIR) Strict Individual Rationality In any bargaining problem 〈S, d〉 we have f(S, d)� d.

That is, the Nash bargaining solution

fN (S, d) = arg max
s∈S
s≥d

(s1 − d1)(s2 − d2)

is the only solution satisfying SYM , SIR, INV and IIA (it is sufficient to show that these

four axioms are equivalent to the standard axioms SYM , WPO, INV and IIA).

Solution. Wlog we set d = 0, and write f(S, d) = f(S). Also, denote AX = SYM +INV +

IIA. We prove both directions:

- (AX + WPO =⇒ AX + SIR): Suppose f satisfies SYM , WPO, INV and IIA,

then we know that f = fN . By definition there is s′ ∈ S such that s′ � d. Since

fN1 (S)fN2 (S) ≥ s′1s′2 > 0, both fN1 (S) and fN2 (S) have to be strictly positive, so SIR

is satisfied.

- (AX + SIR =⇒ AX +WPO): Suppose f satisfies SYM , SIR, INV and IIA, and

let z = f(S). By SIR we have z � 0. Towards a contradiction, suppose z is not

weakly Pareto Optimal. Then exists s′ ∈ S such that s′1 ≥ z1, s′2 ≥ z2, and s′ 6= z. let

ai = zi/s′i. Then ai ≤ 1 and a = (a1, a2) 6= (1, 1). Define T = {(a1s1, a2s2) : (s1, s2) ∈
S}. We have that (1) T ⊂ S, and (2) z ∈ T . Then by IIA we have that f(T ) = z.

But as a 6= (1, 1), by INV we have that f(S) = (z1/a1, z2/a2) 6= z, a contradiction.

Therefore WPO is satisfied.

�

Exercise 4.16 Let B be the set of all convex, compact and comprehensive sets in R2
+

with nonempty intersection with R2
++.

1. Show that the Kalai bargaining solution does not satisfy INV .

2. Show that the Kalai-Smorodinsky bargaining solution does not satisfy IIA.

Solution. Let co(A) refer to the convex hull of A.

1. Take S = co({(0, 0), (1, 0), (0, 1)}). Then fK(S) = (1/2, 1/2). Now take S′ = {(2s1, s2) :

(s1, s2) ∈ S}. Then fK(S′) = (2/3, 2/3) 6= (1, 1/2).

2. Take S = co({(0, 0), (1, 0), (0, 1)}). Then s̄1 = s̄2 = 1 and fKS(S) = (1/2, 1/2). Now

take S′ = co({(0, 0), (1/2, 0), (1/2, 1/2), (0, 1)}). Then s̄′1 = 1/2, s̄′2 = 1, and fKS(S′) =

(1/3, 2/3). We have that fKS(S) ∈ S′, S′ ⊂ S, and fKS(S) 6= fKS(S′).
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�

Exercise 4.23 Show that the strategy profile described in Proposition 5.21 is a SPE.

Solution. By the one deviation property the strategy profile is a SPE if there are no one-shot

profitable deviations. We analyze the four subgames:

1. Player 1 has to make an offer: If she proposes x with x1 > x?1 then the offer is rejected.

In the next period Player 2 offers y? and Player 1 accepts it, getting δu1(y
?
1) <

δδu1(x
?
1) < u1(x

?
1). If she proposes x with x1 < x?1 Player 2 accepts it and Player 1’s

utility is u1(x1) < u1(x
?
1). In this subgame there is no profitable deviation.

2. Player 2 has to make an offer: Analogous to the situation of Player 1.

3. Player 1 has to accept or reject an offer y. If she accepts it she gets u1(y1); if she

rejects it in the next period she proposes x? and Player 2 accepts it, so Player 1’s

utility is δu1(x
?
1). It is optimal for Player 1 accept any offer y if u1(y1) ≥ δu1(x?1). As

u1 is increasing this is equivalent to accept an offer y if and only if y1 ≥ y?1.

4. Player 2 has to accept or reject an offer x. Analogous to the situation of Player 1.

�

Exercise 4.24 Two pirates are bargaining about how to split a treasure worth 1. They

both have the same discount factor δ ∈ (0, 1)

1. Consider the following situation

- In the first round Pirate 1 has to offer Pirate 2 a share of the treasure x.

- If Pirate 2 accepts Pirate 1’s offer, she gets x and Pirate 1 gets 1− x.

- Instead of accepting, Pirate 2 can make a counteroffer y to Pirate 1.

- If Pirate 1 accepts the counteroffer she gets y and Pirate 2 gets 1− y delayed by

one period.

- If Pirate 1 rejects Pirate 2’s counteroffer they both get zero.

Model this game as an extensive game using a tree and find the SPE of the game.

2. Now assume that after Pirate 2’s offer, Pirate 1 can make another counteroffer. If

Pirate 2 accepts such counteroffer the respective payments are delayed by an extra

period ; if not, they both get zero. Model this game as an extensive game using a tree

and find the SPE of the game.

3. According with your previous results, what can you say with respect to the effects on

bargaining power of starting and finishing the game?
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Solution.

1. The tree is the following:

0,0

1− x, x δy, δ(1− y)

x y

A

R

A

R

1

0

1

0

1 2 2 1

We find the SPE by backwards induction:

- In the last subgame Pirate 1 accepts any offer y ≥ 0. The payoffs are δy, δ(1−y)

- Knowing this, Pirate 2 offers y? = 0. The payoffs of the subgame starting at

Pirate 2’s offer are 0, δ.

- Given an offer x from Pirate 1, Pirate 2 accepts it if and only if x ≥ δ.
- Knowing that Pirate 2 rejects an offer greater than δ, and that the rejection leads

to a subgame in which Pirate 1 gets a payoff of zero, Pirate 1 offers x? = δ at

the beginning of the game. the payoffs are 1− δ, δ.
In the unique SPE P1 offers x? = δ and accepts any offer y, and P2 accepts if and

only if x ≥ δ and offers y? = 0. The payoffs are 1− δ, δ.
2. The tree is the following:

0,0

1− x, x δy, δ(1− y) δ2(1− z), δ2z

x y z

A

R

A

R

A

R

100

0

100

0

100

0

1 2 2 1 1 2

We find the SPE by backwards induction:

- First, note that the subgame after P1 rejects offer y is exactly the game in part

1. We know that the unique SPE of that game is z? = 0, which is accepted by

P2, and payoffs are 100δ2, 0.

- Hence P1 accepts an offer y only if δy ≥ 100δ2 ⇐⇒ y ≥ 100δ.
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- As P2’s payoff is decreasing in y (if y is accepted) she offers y? = 100δ. The

payoffs after this offer are 100δ2, 100δ(1− δ).
- Hence Player 2 accepts an offer x only if x ≥ 100δ(1− δ).
- As P1’s payoff is decreasing in x (if x is accepted) she offers x? = 100δ(1 − δ).

The payoffs after this offer are 100(1 − δ(1 − δ)), 100δ(1 − δ). Note that Player

1 has a higher payoff by making this offer than by moving to the next subgame

and therefore there is no profitable deviation.

In the unique SPE P1 offers x? = 100δ(1− δ), accepts y if and only if y ≥ 100δ, and

offers z? = 0, while P2 accept an offer x if and only if x ≥ 100δ(1−δ), offers y? = 100δ,

and accepts an offer z if and only if z ≥ 0. The payoffs are 100(1−δ(1−δ)), 100δ(1−δ).
3. Which advantage is more important (either starting or finishing the game) depends

on the discount factor δ. If δ is high (i.e., the future is important) then finishing is a

higher advantage, but if δ is close to zero (i.e., the future is note very relevant) then

starting is a higher advantage. For example, in part 1. Pirate 1 has the “starting

advantage” and Pirate 2 has the “finishing advantage”. If δ > 1/2 then Pirate 2’s

payoff is higher, but if δ < 1/2 the Pirate 1 gets the higher share of the treasure.

Intuitively, the idea is that when the future is not important (δ is close to zero) the

Player making the offer can make a low offer because the cost for the other party of

rejecting (and delaying the payment) is high. On the other hand, if δ is high the party

that makes the last offer can threat to reject offers and get to the last period where

she holds all the bargaining power.

�
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These notes are based in the corresponding chapters of Martin Osborne and Ariel Rubinstein’s book “A Course

in Game Theory”, which I refer to as OR. Some ideas were also taken from Martin Osborne’s book “An

introduction to Game Theory”, which I refer to as O.

In this section we review exercises from different topics.

5.1 Strategic Games

Exercise 5.1. Suppose α is a NE of the game G, and for Player i there are two different ac-

tions a′i, a
′′
i ∈ Ai such that αi(a

′
i) > 0 and αi(a

′′
i ) > 0. Show that Ui(δa′i , α−i) = Ui(δa′′i , α−i),

where δa′i and δa′′i are the probability measures assigning probability one to a′i and a′′i , re-

spectively. (This is, show that for a player to randomize between two actions in equilibrium

she has to be indifferent between the two.)

Solution. To simplify notation, for each action ai ∈ Ai write Ui(ai) = Ui(δai , α−i). We have

Ui(α) =
∑
ai∈Ai

αi(ai)
∑

a−i∈A−i

∏
j∈N
j 6=i

αj(aj)

ui(ai, a−i) =
∑
ai∈Ai

αi(ai)Ui(ai) .

Towards a contradiction (and wlog) suppose Ui(a
′
i) > Ui(a

′′
i ). Define the strategy α′i for

Player i as follows

α′i(ai) =


αi(a

′
i) + α(a′′i ) if ai = a′i

0 if ai = a′′i

αi(ai) otherwise.

Basically, in strategy α′i Player i never plays a′′i , and instead whenever αi prescribes to play

a′′i , she plays a′i. We have

Ui(α
′
i, α−i) =

∑
ai∈Ai

α′i(ai)Ui(ai) =
∑
ai∈Ai
ai 6=a′i,a′′i

αi(ai)Ui(ai) + (αi(a
′
i) + αi(a

′′
i ))Ui(a

′
i) .

Hence Ui(α) − Ui(α′) = αi(a
′′
i )(Ui(a

′′
i ) − Ui(a′i)) < 0 and α′i is a profitable deviation for

Player i. Therefore α is not a NE. �

5-1
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Exercise 5.2 (OR 56.4). (Cournot Duopoly) Consider the strategic game 〈{1, 2}, (Ai), (ui)〉
in which Ai = [0, 1] and ui(a) = ai(1 − a1 − a2) for i = 1, 2. Show that each player’s only

rationalizable action is his unique NE action.

Solution. First, note that Player i’s best response is aBRi (a−i) = (1−a−i)/2. Thus the NE is

a? = (1/3, 1/3).

Let Zi be the set of rationalizable actions, with m = inf Zi and M = supZi. As the game

is completely symmetric, we have that Z1 = Z2 = Z. Take a belief µ of Player i about

Player −i’s actions, which has expected value aµ ≡ Eµ[a−i]. Player i’s best response given

this belief is aBRi (µ) = (1−aµ)/2.

As supp µ ⊆ [m,M ], we have that aµ ∈ [m,M ], and therefore aBRi (µ) ∈ [(1−M)/2, (1−m)/2].

By definition, if ai ∈ Z then it is a best response to some belief µ, so m ≥ (1−M)/2 and

M ≤ (1−m)/2. These two inequalities and the fact that m ≤M imply that m = M = 1/3. �

Exercise 5.3 (OR 56.3). Find the set of rationalizable actions of each player in the two-

player game in Figure 5.1.

b1 b2 b3 b4

a1 0,7 2,5 7,0 0,1

a2 5,2 3,3 5,2 0,1

a3 7,0 2,5 0,7 0,1

a4 0,0 0,-2 0,0 10,-1

Figure 5.1: The game in Exercise 5.3.

Solution. The actions of Player 1 that are rationalizable are a1, a2, and a3; those of Player

2 are b1, b2, and b3. The actions a2 and b2 are rationalizable since (a2, b2) is a NE. Since

a1 is a best response to b3, b3 is a best response to a3, a3 is a best response to b1, and b1 is

a best response to a1 the actions a1, a3, b1, and b3 are rationalizable. The action b4 is not

rationalizable since if the probability that Player 2’s belief assigns to a4 exceeds 1/2 then

b3 yields a payoff higher than does b4, while if this probability is at most 1/2 then b2 yields

a payoff higher than does b4. The action a4 is not rationalizable since without b4 in the

support of Player 1’s belief a4 is dominated by a2.

That b4 is not rationalizable also follows from it being strictly dominated by the mixed

strategy that assigns the probability 1/3 to b1, b2, and b3. �



Section 5: Review Session 5-3

Exercise 5.4 (2016 Midterm). Consider the Matching Pennies game in which Player 1

has an outside option x ∈ (0, 1) shown in Figure 5.2. Find the set of mixed strategies for

H T

O(ut) x, 0 x, 0

H 1,-1 -1,1

T -1,1 1,-1

Figure 5.2: The game in Exercise 5.4.

Player 1 that survive iterated elimination of strictly dominated actions. Are these strategies

rationalizable? Find the sets of all NE and Trembling Hand Perfect equilibria.

Solution. Let Player 1’s strategy be (p1, p2, 1−p1−p2), and Player 2’s strategy be (q, 1−q).
Then

u1 = p1x+p2(q−(1−q))+(1−p1−p2)(−q+(1−q)) = p1x+p2(2q−1)+(1−p1−p2)(1−2q) .

If 2q = 1 then it is optimal for Player 1 to set p1 = 1 (p2 = 0, 1−p1−p2 = 0); if 2q > 1 then

it is optimal for Player 1 to set 1− p1 − p2 = 0, and if 2q < 1 then it is optimal for Player

1 to set p2 = 0. Therefore a strategy in which Player 1 plays both H and T with strictly

positive probability is strictly dominated. As Player 2’s strategy now depends if Player 1

plays H or T with positive probability, we cannot eliminate any Player 2’s strategy (we

cannot eliminate mixing since is possible when p1 = 1). Furthermore, we cannot eliminate

any other strategy. The set of rationalizable strategies is the same as the set of strategies

that survive iterated elimination of strictly dominated actions.

There is no pure strategy NE. To allow Player 2 to mix we need

U2(H) = U2(T ) ⇐⇒ −p2 + (1− p1 − p2) = p2 − (1− p1 − p2) ⇐⇒ 1− p1 − p2 = p2 .

Since from the first part we know that in any NE either p2 = 0 or 1− p1− p2 = 0, from the

previous condition we get that in any NE Player 1’s strategy is (1, 0, 0). For this strategy

to be optimal we need

U1(O) ≥ U1(H) ⇐⇒ x ≥ q − (1− q) ⇐⇒ q ≤ 1 + x

2

U1(O) ≥ U1(T ) ⇐⇒ x ≥ −q + (1− q) ⇐⇒ q ≥ 1− x
2

.

Therefore, any strategy profile ((1, 0, 0), (q, 1− q)) with q ∈ [1−x/2, 1+x/2] is a NE.

All these equilibria are Trembling Hand perfect. Let σ1 = (1, 0, 0) and σ2 = (q, 1− q) with

q ∈ [1−x/2, 1+x/2]. As σ2 is completely mixed, take σk2 = σ2 for all k ∈ N. Finally, take the
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sequence (εk)k∈N with εk > 0, and let the candidate for Player 1’s strategy be

σk1 = (1− εk, zεk, (1− z)εk)→ σ1 .

For σ2 to be a best response to σk1 we need

U2(σ
k
1 , H) = U2(σ

k
1 , T ) ⇐⇒ zεk − (1− z)εk = −zεk + (1− z)εk ⇐⇒ z =

1

2
.

So σ2 is a best response to σk1 when z = 1/2, and we found the required sequence. �

Exercise 5.5 (2019 Midterm). Consider the variant of the Hawk-Dove game shown in

Figure 5.3. (when c > 1 the game has the standard Hawk-Dove structure). Find of all Nash

D H

D 1,1 0,2

H 2,0 1− c, 1− c

Figure 5.3: The game in Exercise 5.5.

and trembling hand perfect equilibria for all values of c. Are the equilibrium strategies

evolutionary stable?

Solution. It is clear that the value of c is relevant for a player when the other player is

playign H. Moreover, H is best response if and only if c ≤ 1. We analyze the three cases

1. c < 1. In this case H is strictly dominant, so (H,H) is the unique NE, which is

trembling hand perfect, and H is an evolutionary stable strategy.

2. c > 1. In this case there are two pure strategy NE, (D,H) and (H,D) and a mixed

strategy NE in which both players play D with probability (c−1)/c. The mixed strategy

NE is clearly trembling hand perfect. Consider the sequence of strategies (1−εk, εk)→
(1, 0). The action H is a best response to this each element of the sequence if

2(1− εk) + (1− c)εk ≥ 1− εk

which is clearly true if εk is small enough. Finally, take the sequence of strategies

(εk, 1− εk)→ (0, 1). The action D is a best response to each element of the sequence

if

εk ≥ 2ε+ (1− c)(1− ε)

which again is true for εk small enough. Therefore the NE (D,H) and (H,D) are

trembling hand perfect.

Our only candidate for a ESS is the mixed strategy α = ((c−1)/c, 1/c). As this is a

completely mixed strategy equilibrium, it is clear that u(α, α) = U(D,α) = U(H,α).
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Hence α is an ESS if and only if U(α,D) > U(D,D) and U(α,H) > U(H,H). We

have

U(α,D) =
c− 1

c
+ 2

1

c
=

1 + c

c
= 1 +

1

c
> 1 = U(D,D) > 1− c = U(H,H) .

So α is an ESS.

3. c = 1: There are three NE: (D,H), (H,D), and (H,H). We check trembling hand

perfection:

- (H,H). As H is strictly better than D for Player i when Player −i plays D, then

adding tremble towards D for Player −i does not make playing D for Player i

more attractive. Therefore (H,H) is trembling hand perfect.

- (D,H) (and (H,D)). Take the sequence of strategies (εk, 1− εk) → (0, 1). The

action D is a best response to each element of the sequence if εk ≥ 2ε, which is

obviously not true, so (D,H) and (H,D) are not trembling hand perfect.

Finally, our only candidate for an ESS is H. Note that U(H,H) = U(D,H) and

U(H,D) > U(D,D), so H is an ESS.

�
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5.2 Extensive Games

Exercise 5.6. (2015 Midterm)

1. Find the sets of Nash and sequential equilibria of the game in Figure 5.4.

2. Give an example of an extensive-form game of perfect information with a subgame

perfect equilibrium that is not trembling-hand perfect equilibrium.

3. Give an example of an extensive-form game of perfect information whose strategic form

has trembling-hand perfect equilibrium that is not a subgame perfect equilibrium.

2,2

0,0 0,1 1,0 3,1

L M R

` r ` r

1

2

Figure 5.4: The game in Exercise 5.6.

Solution.

1. First, note that r is strictly dominant for Player 2. Given this, Player 1’s best response

is to play R. Finally, Player 2’s beliefs when she has to play are P(h = (M)) = 0 and

P(h = (R)) = 1. It is clear that this is the only equilibrium that satisfies sequential

rationality.

2. The game shown in Figure 5.5 has such an equilibrium. Note that b is weakly dominant

for Player 2, so Player 1 in indifferent between A and B in any SPE. Therefore

(B, (b, b)) is a SPE. However, if Player 2 trembles it is strictly dominant for Player 1

to play A, so (B, (b, b)) is not trembling hand perfect.

10,-10 0,0 0,0 0,0

A B

a b a b

1

2 2

Figure 5.5: The strategy profile (B, (b, b)) is subgame perfect but not trembling hand perfect.
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3. The game shown in Figure 5.6 is such an example. Note that ((A,D), a) is a NE and

C is strictly dominant for Player 1 in the subgame following history (B, b). Hence

((A,D), a) is a NE that is not a SPE. However, for small trembles of Player 1, a is

still the best response for Player 2, and for small trembles of Player 2, (A,D) is still

a best response for Player 1. Therefore ((A,D), a) is trembling hand perfect.

100,0

0,0

0,10

1,0

A B

a b

C D

1

2

1

Figure 5.6: The strategy profile ((A,D), a) is trembling hand perfect but not subgame
perfect.

�

Exercise 5.7 (2016 Midterm). Find the sets of sequential equilibria of the two games in

Figure 5.7 (Game II is obtained from Game I by adding a move to Player 1). Discuss the

differences between the sets of equilibria in the two games.

2,2

0,1 0,0 1,0 4,1

L M R

` r ` r

1

2

(a) Game I

2,2

0,1 0,0 1,0 4,1

A NA

M R

` r ` r

1

1

2

(b) Game II

Figure 5.7: The game in Exercise 5.7.

Solution. We analyze the games by backwards induction.

- Game I: Let µ be Player 2’s beliefs of the history being (M) when her information

set is reached. Then ` is weakly preferred to Player 2 if and only if µ ≥ 1/2. Also,
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let δ denote that probability of Player 2 playing `. Then Player 1 weakly prefers L

over R if and only if δ ≥ 2/3, and M is strictly dominated. Now we analyze sequential

rationality for each possible value of µ.

1. µ > 1/2→ P2 chooses `, i.e. δ = 1→ Player 1 chooses L→ µ cannot be computed

using Bayes’ rule.

2. µ < 1/2→ P2 chooses r, i.e. δ = 0→ Player 1 chooses R→ by Bayes’ rule µ = 0,

which is consistent with the initial condition µ < 1/2.

3. µ = 1/2: Let P(a) be the probability of Player 1 playing acton a. There are two

cases that can induce µ = 1/2.

(a) P(M) = P(R) > 0: this is inconsistent with M being strictly dominated by

R.

(b) P(M) = P(R) = 0: in this case P(L) = 1, which only happens if δ ≥ 2/3.

This behavior of Player 2 is consistent with a belief µ = 1/2.

We denote βi Player i’s behavioral strategy and β = (β1, β2). We have three can-

didates for sequential equilibria. Let (εk)k∈N be a sequence satisfying εk > 0 for all

k ∈ N and εk → 0. We check consistency.

1. β = ((1, 0, 0), (1, 0)), µ > 1/2. Take the sequence of profiles of behavioral strate-

gies (βk)k∈N defined by

βk =
((

1− εk − (εk)2, µεk, (1− µ)εk + (εk)2
)
,
(

1− εk, εk
))

.

Note that strategies are completely mixed (the term (εk)2 assures this in the case

when µ = 1). By Bayes’ rule we have that

µk =
µεk

µεk + (1− µ)εk + (εk)2
=

µ

1 + εk
→ µ .

Therefore the assessment is consistent.

2. β = ((0, 0, 1), (0, 1)), µ = 0. As µ is directly revealed from Bayes’ rule the

assessment is consistent.

3. β = ((0, 0, 1), (δ, 1 − δ)) for δ ≥ 2/3, µ = 1/2. Take the sequence of profiles of

behavioral strategies (βk)k∈N defined by

βk =
((

1− 2εk, εk, εk
)
,
(

1− εk, εk
))

.

By Bayes’ rule we have that

µk =
εk

εk + εk
=

1

2
→ 1

2
.

Therefore the assessment is consistent.
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We have three types of sequential equilibria: (1) β = ((0, 0, 1), (0, 1)), µ = 0, (2)

β = ((0, 0, 1), (0, 1)), µ = 0, and β = ((0, 0, 1), (δ, 1− δ)) for δ ≥ 2/3, µ = 1/2.

- Game II: Let µ be the probability that Player 2 assigns to the history (NA,M) when

she has to play (she assigns probability 1 − µ to (NA,R)). We know that Player 2

prefers ` if and only if µ ≥ 1/2. Conditional on the history (NA) it is strictly dominant

for Player 1 to choose R, so every sequentially rational strategy has to prescribe for

Player 1 to play R after (NA). Therefore by consistency we have that µ = 0, and by

sequential rationality Player 2 plays r. Finally, as Player 1 gets a utility of 4 in thie

subgame after NA and gets 3 if she chooses A, she chooses NA at the beginning of

the game.

The only sequential equilibirum is ((0, 0, 1), (0, 1)), µ = 0.

The difference between these two games is that for Player 2 to have a belief µ high enough

in Game II Player 1 has to choose M with a (weakly) higher probability than R, and this

never happens if Player 1 has to choose only between M and R. On the other hand, in

Game I Player 1 might want to choose L, so she chooses only M and R by mistake. And as

both are mistakes, it is possible for the mistake of choosing M to be more likely than the

mistake of choosing R. �
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5.3 Repeated Games

Exercise 5.8 (2019 Midterm). Consider the Prisoner’s Dilemma game shown in Figure

5.8, where y > x > 1.

C D

C x, x 0, y

D y, 0 1,1

Figure 5.8: The Prisoner’s Dilemma.

1. Find the condition on the discount factor δ ∈ (0, 1) under which(tit− for− tat, tit−
for − tat) is a Nash equilibrium for the infinitely repeated game.

2. Show that (tit − for − tat, tit − for − tat) is a subgame perfect equilibrium of the

infinitely repeated game if and only if δ = x−1 and y − x = 1.

Solution. First, note that if both players play tit-for-tat the history is (C,C) in every period

and the payoff is x. We analyze (wlog) deviations of Player 1 in the first period.

1. If Player 1 chooses D in the first period, the profile is (D,C) at t = 1, then Player 2

chooses D in at t = 2. Player 1 has two possible options for t = 2

- C: In this case the profile is (C,D). Player 2 plays C at t = 3, and Plater 1

again has two options:

- C. In this case the profile is (C,C)

- D. In this case the profile is (D,C)

Note that if choosing C at t = 3 is optimal for Player 1, then she prefers to

induce the profile (C,C) over the profile (D,C). But then the initial deviation

to (D,C) over (C,C) at t = 1 is not optimal.1 Therefore, the deviation in which

Player 1 plays C at t = 2 is maximized by alternating between D and C, which

generates the history (D,C), (C,D), (D,C), . . .. the value for Player 1 of this

history is

(1− δ)
[
y + δ2y + δ4y + . . .

]
= (1− δ) y

1− δ2
=

y

1 + δ
.

- D: In this case the profile is (D,D). Player 2 plays D at t = 3 and Player 1 has

two options.

- C: In this case the profile is (C,D).

- D: In this case the profile is (D,D).

1This analysis is true here only because the actions that Player 2 chooses depend only on what Player 1
did in the previous period.
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Note that if Player 1 chooses C at t = 3, then she prefers the profile (C,D)

over the profile (D,D). But then she would also have preferred this at t = 2,

which is inconsistent with the choice D at t = 2. then for this deviation

to be more attractive than choosing C at t = 2 we need for (D,D) to be

more attractive (for Player 1) than (C,D). therefore it induces the history

(D,C), (D,D), (D,D), (D,D), . . ., whose payoff is

(1− δ)
[
y + δ + δ2 + . . .

]
= (1− δ)y + δ = y − δ(y − 1) .

Finally (tit-for-tat,tit-for-tat) is a NE if none of these two strategies is a profitable

deviation. This is(
x ≥ y

1 + δ
⇐⇒ δ ≥ y − x

x

)
; and

(
x ≥ y − δ(y − 1) ⇐⇒ δ ≥ y − x

y − 1

)
.

2. Note that after the strategy profile (tit-for-tat,tit-for-tat) the only part of the his-

tory that influences what happens in the future is what happened in the last period.

Therefore there are 5 sets of histories that we need to analyze. First we look at the

histories they induce in the future under (tit-for-tat,tit-for-tat).

- φ: In this case the induced history is h1 ≡ ((C,C), (C,C), . . .). The value of h1
for Player 1 is V1(h1) = x.

- History ends in (C,C): In this case the induced history is also h1.

- History ends in (C,D): In this case the induced history is h2 ≡ ((D,C), (C,D), (D,C), . . .),

whose value is V1(h2) = y/(1+δ).

- History ends in (D,C): In this case the induced history is h3 ≡ ((C,D), (D,C), (C,D), . . .),

whose value is V1(h3) = δV1(h2) = δy/(1+δ).

- History ends in (D,D): In this case the induced history is h4 ≡ ((D,D), (D,D), (D,D), . . .),

whose value is V1(h4) = 1.

By the one deviation property we analyze strategies in which Player 1 deviates for

one period and the continue playing tit-for-tat.

- If deviates after φ, induces history h2. There’s no profitable deviation if V1(h1) ≥
V1(h2).

- If deviates after (C,C), induces history h2. There’s no profitable deviation if

V1(h1) ≥ V1(h2).
- If deviates after (C,D), induces history h1. There’s no profitable deviation if

V1(h2) ≥ V1(h1).
- If deviates after (D,C), induces history h4. There’s no profitable deviation if

V1(h3) ≥ V1(h4).
- If deviates after (D,D), induces history h3. There’s no profitable deviation if

V1(h4) ≥ V1(h3).
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All these conditions imply V1(h1) = V1(h2) and V1(h3) = V1(h4), from where it is

straightforward to derived the required conditions.

�

Exercise 5.9 (Problem Set 6). Find the conditions on x, y, and δ such that the following

strategy is a Nash Equilibrium: “Choose C in period 1 and after any history in which the

outcome of the last period is either (C,C) or (D,D); choose D after any other history.”

(That is, choose the same action again if the outcome was relatively good for you, and

switch actions if it was not.)

Solution. The best deviation for Player 2 leads to the sequence of outcomes that alternates

between (C,D) and (D,D). The discounted average payoff of this sequence of outcomes is

(1− δ)
[
y + δ + yδ2 + δ3 + . . .

]
= (1− δ)

[
y + yδ2 + . . .

]
+ (1− δ)

[
δ + δ3 + . . .

]
= (1− δ) y + δ

1− δ2

=
y + δ

1 + δ
.

On the other hand the discounted average of the constant sequence containing only (C,C)

is x. Thus for the strategy pair to be a Nash equilibrium we need

x ≥ y + δ

1 + δ
⇐⇒ δ ≥ y − x

x− 1
.

�
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5.4 Bargaining

Exercise 5.10 (2019 Midterm). Show that in the standard Nash bargaining problem WPO

can be replaced with SIR.

- Weak Pareto Efficiency (WPO): If 〈S, d〉 is a bargaining problem where s,∈ S, t ∈ S
and ti > si for i = 1, 2, then f(S, d) 6= s.

- Strict Individual Rationality (SIR): In any bargaining problem 〈S, d〉 we have f(S, d)� d.

That is, the Nash bargaining solution

fN (S, d) = arg max
s∈S
s≥d

(s1 − d1)(s2 − d2)

is the only solution satisfying SYM , SIR, INV and IIA (it is sufficient to show that these

four axioms are equivalent to the standard axioms SYM , WPO, INV and IIA).

Solution. Wlog we set d = 0, and write f(S, d) = f(S). Also, denote AX = SYM +INV +

IIA. We prove both directions:

- (AX + WPO =⇒ AX + SIR): Suppose f satisfies SYM , WPO, INV and IIA,

then we know that f = fN . It is clear that fN satisfies SIR.

- (AX+SIR =⇒ AX+WPO): Suppose f satisfies SYM , SIR, INV and IIA, and let

z = f(S). By SIR we have z � 0. Towards a contradiction, suppose z is not weakly

Pareto Optimal. Then exists s ∈ S such that s1 ≥ z1, s2 ≥ z2, and s 6= z. let ai = zi/si.

Then ai ≤ 1 and a = (a1, a2) 6= (1, 1). Define S′ = {(a1s1, a2s2) : (s1, s2) ∈ S}. We

have that (1) S′ ⊂ S, and (2) z ∈ S′. Then by IIA we have that f(S′) = z. But as

a 6= (1, 1) we have that f(S′) = z contradicts INV . Therefore f has to satisfy WPO.

�

Exercise 5.11 (2017 Midterm). Consider the set of all bargaining problems 〈S, d〉 where

d ∈ S and S is compact, convex, and comprehensive and and there exists s ∈ S such that

s� d.

The proportional bargaining solution fP can be defined in terms of the social welfare func-

tion

fP (S, d) = arg max
s∈S
s≥d

min{α(s1 − d1), β(s2 − d2)} ;

where α, β > 0.

Determine whether the proportional bargaining solution satisfies each of the axioms of

Nash invariance to equivalent utility representations, symmetry, independence of irrelevant



Section 5: Review Session 5-14

alternatives, and weak Pareto efficiency.

Solution. First, note that the solution is not unique. Take for example α = β = 1 and

S = co({(0, 0), (1, 0), (1, 2), (0, 2)}) ,

where co refers to the convex hull. Note that both (1, 1) and (1, 2) are maximizers.

- fP satisfies IIA. Suppose S′ ⊂ S, z ∈ fP (S) and z ∈ S′. Towards a contradiction

suppose z /∈ fP (S′). Then there is z′ ∈ S′ such that

min{α(z′1 − d1), β(z′2 − d2)} > min{α(z1 − d1), β(z2 − d2)} .

But as S′ ⊂ S we have that z′ ∈ S, which contradicts the fact that z ∈ fP (S).

- fP does not satisfy INV . Take α = 1, β = 2, and S = co({(0, 0), (1, 0), (0, 1)}).
Then fP (S) = (2/3, 1/3). Now take the set S′ = {(2s1, s2) : (s1, s2) ∈ S}. Then

fP (S′) = (1, 1/2). As fP2 (S) 6= fP2 (S′) we have that INV is violated.

- fP satisfies WPO. Suppose s, t ∈ S and t� s (i.e., t1 > s1 and t2 > s2). Then

min{α(t1 − d1), β(t2 − d2)} > min{α(s1 − d1), β(s2 − d2)} .

Therefore s /∈ fP (S).

- fP does not satisfy SYM in general. Take α 6= β, and S = co({(0, 0), (1, 0), (0, 1)}).
Then S is symmetric but

fP1 (S) =
β

α+ β
6= α

α+ β
= fP2 (S) .

�
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Exercise 5.12 (2016 Midterm). Let B be the set of all convex, compact and comprehensive

sets in R2
+ with nonempty intersection with R2

++.

1. Show that the Kalai bargaining solution

fK(S, d) = {s ∈ S : s1 = s2} ∩WPO(S)

does not satisfy INV .

2. Show that the Kalai-Smorodinsky bargaining solution

fK(S, d) =

{
s ∈ S :

s1
s̄1

=
s2
s̄2

}
∩WPO(S) ,

with s̄i = arg maxs∈S si, does not satisfy IIA.

Solution.

1. Take S = co({(0, 0), (1, 0), (0, 1)}). Then fK(S) = (1/2, 1/2). Now take S′ = {(2s1, s2) :

(s1, s2) ∈ S}. Then fK(S′) = (2/3, 2/3) 6= (1, 1/2).

2. Take S = co({(0, 0), (1, 0), (0, 1)}). Then s̄1 = s̄2 = 1 and fKS(S) = (1/2, 1/2). Now

take S′ = co({(0, 0), (1/2, 0), (1/2, 1/2), (0, 1)}). Then s̄′1 = 1/2, s̄′2 = 1, and fKS(S′) =

(1/3, 2/3). We have that fKS(S) ∈ S′, S′ ⊂ S, and fKS(S) 6= fKS(S′).

�
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Exercise 5.13 (2020 Midterm). Let B denote the set of all bargaining problems 〈S, d〉
where d ∈ S and S is compact and convex. The linear bargaining solution can be defined

in terms of the social welfare function

α(s1 − d1) + β(s2 − d2)

where α, β > 0. (When α = β the proportional bargaining solution leads to exactly the

same outcome as the utilitarian criterion.) Determine whether the proportional bargaining

solution satisfies each of the axioms of Nash – SYM , WPO, INV and IIA.

Solution. Let fL(S, d) be the solution. Define the problem
〈
S̄, d̄

〉
by d̄ = (0, 0) and

S̄ = {(s1, s2) ∈ R : s1 + s2 ≤ 1} .

- SYM : Take α > β. Note that
〈
S̄, d̄

〉
is a symmetric problem. However the solution

in this case is s? = fL(S̄, d̄) = (1, 0), which does not satisfy s?1 = s?2. Therefore fL

does not satisfy SYM .

- WPO: Suppose s, t ∈ S, where si > ti for i = 1, 2. Then as α, β > 0 we have that

α(s1 − d1) + β(s2 − d2) > α(t1 − d1) + β(t2 − d2)

and t cannot be the solution to 〈S, d〉. Therefore fL satisfies WPO.

- INV : Take α = 1 and β ∈ (1, 2). We have that s? = fL(S̄, d̄) = (0, 1). Now take

S′ = {(2 s1, s2) : (s1, s2) ∈ S̄} .

Note that S′ is obtained from S̄ by the transformations si 7→ αisi + βi with α1 = 2,

α2 = 1, and β1 = β2 = 0. We have that s?? = fL(S′, d̄) = (2, 0). Therefore

s??i 6= αis
?
i + βi for i = 1, 2, and fL does not satisfy INV .

- IIA. Take two bargaining problems 〈S, d〉 and 〈S′, d〉 with S′ ⊂ S, and assume

s? = fL(S, d) ∈ S′. By definition of fL for every s ∈ S we have2

α(s?1 − d1) + β(s?2 − d2) > α(s1 − d1) + β(s2 − d2) .

As S′ ⊂ S we have that the previous condition holds for every s′ ∈ S′. Therefore

s? = fL(S′, d), and fL satisfies IIA.

�

2Here we assume the solution is unique. To extend to the general case requires just to replace s? = fL(S, d)
by s? ∈ fL(S, d), and the strict inequality condition by a weak inequality.
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