
Smooth Rationalization

Online Appendix

Cristián Ugarte

This appendix presents smooth rationalization results focusing on utility func-

tions with further structure than being strictly increasing and concave. We study

three specific cases: strictly concave utilities (Section I), homothetic utilities (Sec-

tion II), and quasilinear utilities (Section III).1 In all cases, we can achieve smooth

rationalization by the same approach as in the general case; the only additional

condition for smooth rationalization is to smooth the indifference sets. The main

difference is that different structures on the utility functions allow us to infer differ-

ent indifferences. All proofs are in Section IV.

I Smooth Rationalization by a Strictly Concave Utility

In this section, we analyze conditions to smoothly rationalize the observed choices

by a strictly concave utility, i.e., for smooth rationalization restricted to SARP. A

strictly concave utility implies that each chosen bundle must be the unique optimal

choice from its budget set, i.e., the demand is single-valued.2 The implication for

1Homothetic and quasilinear utilities are the only cases in which the consumer surplus is a valid
welfare measure (Silberberg, 1990, see Section 11.5 in).

2To see this, suppose xi is an optimal choice from price pi, but there is another bundle x that is
affordable (pi · x ≤ 1) and indifferent to xi. Take z = (x+xi)/2. Then pi · z ≤ 1 and, as U is strictly
concave U(z) > U(xi), which contradicts the optimality of xi.
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revealed preferences is that different chosen bundles cannot revealed indifferent to

each other.3

The main implication of a strictly concave utility for our data set modification

is that one application of the modification is enough to reach the fixed point.

Lemma A.1. If Γ(D) is rationalizable by a strictly concave utility, then Γ(D) =

Γ(Γ(D)).

The following result is an equivalent of Proposition 2 for the case of a strictly

concave utility.

Proposition A.1. Suppose D = Γ(D). Then D is rationalizable by a strictly con-

cave utility if, and only if, it is smoothly rationalizable by a strictly concave and

infinitely differentiable utility.

Theorem A.1 presents the characterization of smooth rationalization by a strictly

concave utility.

Theorem A.1. The following are equivalent:

Sa-1) D is smoothly rationalizable by a strictly concave utility.

Sa-2) Γ(D) is rationalizable by a well-behaved and strictly concave utility.

Sa-3) For all i ∈ [N ] there exists numbers ui ∈ R, λi > 0 and K-dimensional vectors

µi ≥ 0 such that

ui > uj + λi(1− pi · xj) + µi · xj whenever xi 6= xj (S1)

ui = uj whenever xi = xj (S2)

λi pi − µi = λj pj − µj whenever xi = xj (S3)

λi pi − µi � 0 for all i ∈ [N ] (S4)

µi · xi = 0 for all i ∈ [N ] (S5)

3To see this, note that rationalization by a strictly concave utility is equivalent to SARP, which
rules out revealed indifferences between different chosen bundles.
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Sa-4) D is smoothly rationalizable by a strictly concave and infinitely differentiable

utility.

The interpretation of the statements in Theorem A.1 is similar to the ones in

Theorem 1. One particular difference with rationalization results that do not re-

quire smoothness is that both (S1) and (G1) is that both are strict inequalities. In

contrast, the Afriat inequalities are weak in the case of a concave utility (see Afriat,

1967; Varian, 1982), and strict in the case of a strictly concave utility (Theorem 2

in Matzkin & Richter, 1991). The reason for this difference is that, as explained

in Section 3, smooth rationalization precludes us from introducing further indiffer-

ences than the ones implied by the revealed preferences, which is also true when

we require rationalization by a well-behaved and strictly concave utility even when

smoothness is not required.

An important comment regarding testing the smooth rationalization by a strictly

concave utility is that, in the modified data set Γ(D), SARP and rationalization by

a well-behaved and strictly concave utility are not equivalent. The reason for this

is that, on the one hand, SARP does not compare a bundle with itself and, on

the other, Γ(D) might have some observation i satisfying ri · xi < 1, violating strict

monotonicity. An example of this problem is presented in Figure A.1, which presents

the modified data set of the panel (a) of Figure 1. This modified data set vacuously

satisfies SARP; however, it is not rationalizable by any strictly increasing utility as

the chosen bundle is in the interior of the (modified) budget set.

The following proposition presents a simple test for rationalizing the modified

data set by a strictly concave utility. This result is a direct consequence of Theorem

2 in Matzkin and Richter (1991); hence we omit the proof.

Proposition A.2. Γ(D) is rationalizable by a well-behaved and strictly concave

utility if, and only if, it satisfies SARP and ri · xi = 1 for all i ∈ [N ].
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Figure A.1: Modified data set of panel (a) in Figure 1.

II Smooth Rationalization by a Homothetic Utility

Homothetic utilities have the property that the marginal rate of substitutions de-

pends only on the share between goods, not their level. Hence, the ratio of goods

in the optimal consumption bundle depends only on the price ratio, not the income

level.

The rationalization test for homothetic utilities has a cyclical structure. To

achieve smooth rationalization, we first show that the cycles in the test can be

used to infer indifferences in the data beyond the ones obtained by the revealed

indifference relation. After that, we use all the inferred indifferences to modify the

data set by taking the meet of prices among indifferences (until finding a fixed point).

As in the previous sections, the test for differentiability of the utility function is the

original rationalization test applied to the modified data set.

A utility function u is homothetic if it is a monotonic transformation of a function

that is homogeneous of degree one, i.e., if u(x) = f(g(x)), where f : R→ R is strictly

increasing and g : RK+ → R is homogeneous of degree one. Since utility representa-

tions are invariant to monotonic transformations (utility is an ordinal representation

of preferences), we focus on utilities that are homogeneous of degree one. Hence,

we use the terms homothetic and homogeneous of degree one interchangeably. One

caveat of assuming homotheticity is that we cannot obtain differentiability at the
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zero bundle; this is because any function that is homogeneous of degree one and

differentiable at 0 is linear, which is a stronger requirement.4 Hence, in this section,

we say that a data set is smoothly rationalizable by a homothetic utility if such

utility is well-behaved, homothetic, and differentiable in RK+ \ 0.

Varian (1983) shows that the Homothetic Axiom of Revealed Preferences, HARP,

is a test for rationalization by a homothetic utility.5

Definition A.1. D satisfies the Homothetic Axiom of Revealed Preferences, HARP,

if for any sequence of different observations (m`)`∈[L],

(pmL · xm1)(pm1 · xm2)(pm2 · xm3) . . . (pmL−1 · xmL) ≥ 1 .

Furthermore, Varian (1983) shows that if D is rationalizable by a homothetic

utility, such utility can always be chosen to be well-behaved and that there are

numbers ui > 0 such that ui ≤ uj pj ·xi for all i, j.6 Knoblauch (1993) characterizes

all homothetic preferences that rationalizeD for a given data set that satisfies HARP.

We present an example to understand the motivation for HARP and the re-

strictions it imposes to achieve differentiability. Suppose we have three observations

i, j,m such that

(pi · xj)(pj · xm)(pm · xi) = 1

and a homothetic utility U rationalizing such choices. As pi ·
(
(pj · xm)(pm · xi)xj

)
=

4To see that a function that is homogeneous of degree one and differentiable at 0 is linear, take
f to satisfy both properties. Since for λ > 0 we have f(0) = f(λ0) = λf(0) we conclude f(0) = 0.
Fix x 6= 0; since f is differentiable at zero

0 = lim
t→0+

f(t x)− f(0)−∇f(0) · (t x− 0)

||t x− 0|| = lim
t→0+

t f(x)− t∇f(0) · x
t ||x|| =

f(x)−∇f(0) · x
||x|| .

Hence f(x) = ∇f(0) · x. Since x is arbitrary, we conclude that f is linear.
5When characterizing homothetic utility, Varian (1983) points to several bibliographical remarks

regarding previous related results, in particular, he states that Afriat (1981) already presented a
version of rationalization by a homothetic utility.

6The motivation for these numbers is that if U is homothetic, then the marginal utility of income
λ equals the utility U(x). The numbers can be obtained by replacing this equality on the Afriat
inequalities.
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1, revealed preferences imply U(xi) ≥ U
(
(pj · xm)(pm · xi)xj

)
. Moreover, since U

is homothetic and xj is the optimal choice from pj , then (pj · xm)(pm · xi)xj is

optimal from
[
(pj · xm)(pm · xi)

]−1
pj ; in particular, as

[
(pj · xm)(pm · xi)

]−1
pj ·

(pm · xi)xm = 1, we have U
(
(pj · xm)(pm · xi)xj

)
≥ U

(
(pm · xi)xm

)
. Similarly,

as xm is optimal from pm, homotheticity implies that (pm · xi)xm is optimal from

(pm · xi)−1 pm, thus U
(
(pm · xi)xm

)
≥ U(xi). Collecting these inequalities yields

U(xi) ≥ U
(
(pj · xm)(pm · xi)xj

)
≥ U

(
(pm · xi)xm

)
≥ U(xi) (1)

If choices are rationalizable by a homothetic utility, then the previous (weak) in-

equalities must be equalities. Thus, if instead of starting from the product being

equal to one, we start from (pi · xj)(pj · xm)(pm · xi) < 1, then the first inequal-

ity in the above restriction would be strict, implying that rationalizing D with a

homothetic utility is not possible.

Since rationalization by a homothetic utility implies that the inequalities in (1)

have to be equalities, we can infer indifferences between xi and projections of xj

and xm. Furthermore, if we assume differentiability, we obtain that xi, xj , and xm

have the same MRS (for interior solutions). Since (pj · xm)(pm · xi)xj is affordable

at price pi, then it is optimal from such price. Hence, the MRS at this bundle (and

thus also at xj) is equal to the price ratio in pi, which is also equal to the MRS at

xi. Similarly, we can conclude equal MRS at xi and (pm · xi)xm, hence also at xm.

Figure A.2 presents a simple example in which a homothetic rationalization exists

but cannot be smooth.

As in the previous sections, the critical component to characterize rationalization

by a differentiable utility is the existence of indifferences. For the reasons explained

in the previous paragraph, we can infer indifferences by looking at sequences of

observations like the ones analyzed in the definition of HARP. Also, the indiffer-

ences inferred from the revealed indifference relation in Definition 1 can also be
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Figure A.2: The data set can be rationalized by a homothetic utility. However, it
cannot be differentiable as both choices cannot have the same MRS.

inferred through the cycles analyzed in HARP.7 Hence, it is sufficient to only focus

on such cycles. We will refer to sequences that allow us to infer indifferences in the

homothetic case as H1-sequences (i.e., HARP sequences that are less or equal to

one).

Definition A.2. An H1-sequence is a sequence of unique observations (m`)`∈[L]

such that

(pmL · xm1)(pm1 · xm2) . . . (pmL−1 · xmL) ≤ 1

The reason to include a weak inequality in the previous definition (instead of

equality) is analogous to the idea of not changing the definition of revealed indif-

ferences in the modification of the data set (Definition 7). Although the inequality

in the previous definition has to be an equality to satisfy HARP, defining the se-

quences in this form will ensure that creating the modified data set for homothetic

rationalization stops in a finite number of steps. Furthermore, suppose that we have

an H1-sequence for which the inequality is strict after the data set modification. In

that case, we already know that a homothetic utility cannot smoothly rationalize

such a data set.

7Suppose (pi ·xj)(pj ·xm)(pm ·xi) = 1 and we know xi ∼ xj ∼ xm. GARP implies (without loss of
generality) pi ·xj = pj ·xm = pm ·xi = 1. Therefore U(xi) = U((pj ·xm)(pm ·xi)xj) = U((pm ·xi)xm)
is equivalent to U(xi) = U(xj) = U(xm).
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The motivation for creating a modified data set is that indifferences between

choices in the data imply equality of the MRSs. Along with concavity, this equality

makes the indifference set linear. Since assuming a homothetic utility implies that we

can infer indifferences between one choice and a scaled version of another (through

H1-sequences), we must add such indifferences in our analysis. To simplify our

notation, we will focus directly on prices instead of choices. Following Varian (1982)

(Section 3), we refer to a price as revealed indifferent to another if we can infer that

the optimal choice from the former is indifferent to the optimal choice of the latter.

Suppose again (pi · xj)(pj · xm)(pm · xi) = 1. Focusing on observation i, this

example generates the H1-sequence s = (j, k, i). Since we infer that (pj · xm)(pm ·

xi)xj is both optimal from (pj · xm)(pm · xi)pj and indifferent to xi, the agent is

indifferent between prices pi and (pj ·xm)(pm ·xi)xj . Similarly, she is also indifferent

between pi and (pm · xi)pm. These indifferences imply that all these prices should

be considered when modifying the price of observation i. The following definition

formalizes such a notion.

Definition A.3. For any H1-sequence s = (m`)`∈[L] let

IH (s) =


(
L−1∏
r=`

pmr · xmr+1

)−1
pm`


`∈[L]

be the set of prices that are revealed indifferent to pmL . Furthermore, denote by

SH(i) the set of all H1-sequences ending in i. The homothetic modification of D,

ΓH(D), is ΓH(D) =
(
ri,H , xi

)
i∈[N ]

, where

ri,H =
∧ ⋃

s∈SH(i)

IH(s) .

Every H1-sequence s ending in i yields information about prices that are indif-

ferent to pi; the previous definition collects all such prices in IH(s). We take all

the prices revealed indifferent to pi by taking the union of all the sets IH(s) for
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sequences that end in i. Finally, the homothetic modification of D, ΓH(D), replaces

each price by the meet of all prices revealed indifferent to pi.

The following result, analogous to Proposition 1, shows the role of the fixed point

of the homothetic modification to test for a differentiable utility.

Proposition A.3. Suppose D = ΓH(D). D is rationalizable by a well-behaved and

homothetic utility if, and only it, it is smoothly rationalizable by a homothetic utility

that is infinitely differentiable everywhere except at 0.

As the proofs of Proposition 2 and Proposition A.1, the proof of the previous

result is constructive. However, to construct a homothetic rationalizing utility re-

quires a further step. The reason is that the convolution technique used in the

proofs does not preserve homotheticity. For this construction, we start by using

the function proposed by Varian (1983) (using the numbers in H-3) instead of the

ones he proposed), which is homothetic. Then, we project all the choices into one

indifference curve on this function and use convolution to smooth that particular

indifference curve. Then, we expand that smooth indifference curve to other utility

levels. When doing it, we choose a superset of RK+ that assures such an extension

is well-defined. This expansion yields a (well-behaved) homothetic utility function.

Finally, following Debreu (1972) and Neilson (1991), we conclude that this utility is

also infinitely differentiable everywhere except at 0.

Theorem A.2 presents our characterization of rationalization by a homothetic

and differentiable utility.

Theorem A.2. Let DH∧ be the fixed point of ΓH , starting from D. The following

are equivalent:

H-1) D is smoothly rationalizable by a homothetic utility.

H-2) DH∧ is rationalizable by a homothetic utility (i.e., satisfies HARP).

9



H-3) For two bundles xi, xj, denote by xi ≈H∧ the existence of an H1-sequence in

DH∧ containing both i and j. There are numbers ui > 0 and µi ≥ 0 such that

ui pi · xj > uj + µi · xj whenever xi 6≈H xj (H1)

ui pi · xj = uj + µi · xj whenever xi ≈H xj (H2)

ui pi − µi = uj pj − µj whenever xi ≈H xj (H3)

ui pi − µi � 0 for all i ∈ [N ] (H4)

µi · xi = 0 for all i ∈ [N ] (H5)

H-4) D is smoothly rationalizable by a homothetic utility that is infinitely differen-

tiable everywhere except at 0.

III Smooth Rationalization by a Quasilinear Utility

A utility function is quasilinear if it takes the form U(x) + y, where x ∈ RK+ is the

commodities space, and y is a numeraire good. The numeraire good is measured

in the same units as wealth. Hence its price is one. Quasilinear utility functions

are used in many areas of economics, including mechanism design, public economics,

industrial organization, and international trade. In all such applications, quasilinear

utilities are usually also assumed to be differential. We can think of an agent as

maximizing a quasilinear utility if the following terms:

Definition A.4. D is quasilinear rationalizable if there is a well-behaved utility U

such that for all i ∈ [N ], xi maximizes U(x) + y subject to pi · x+ y = 0 and x ≥ 0.

The function U(x) + y quasilinear rationalizes D

As in many applications, we assume that the numeraire good can be negative;

hence, the budget constraint is nonbinding in the maximization problem (see Chap-

ter 4.2.3 in Chambers & Echenique, 2016). The previous definition implies that D

is rationalizable by a quasilinear utility U if, and only if, U(xi)− 1 ≥ U(x)− pi · x
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for all i ∈ [N ] and x ∈ RK+ . Brown and Calsamiglia (2007) show that the rational-

ization by a quasilinear utility is equivalent to cyclical monotonicity, a condition to

characterize the subgradient correspondence for convex real-valued functions (see

Rockafellar, 2015).

Definition A.5. D is cyclically monotone if for any sequence of observations (m`)`∈[L]

(pmL · xm1 − 1) + (pm1 · xm2 − 1) + (pm2 · xm3 − 1) + . . .+ ·(pmL−1xmL − 1) ≥ 0 .

(2)

If D satisfies cyclical monotonicity, the homothetic function U(x)+y can always

be chosen such that U(·) is continuous, strictly increasing, and convex. Further-

more, Brown and Calsamiglia (2007) show that this property is equivalent to the

existence of numbers ui ∈ R such that ui ≥ uj + 1− pi · xj , which have the intuitive

interpretation that a homothetic utility assures that the marginal utility of income,

whose analogous in the Afriat inequalities is λi, is always equal to one.

As in the case of homothetic utilities and HARP, a quasilinear utility and cyclical

monotonicity allow us to infer further indifferences than the ones in the revealed

preferences. To see this, take the example (pi ·xj−1)+(pj ·xm−1)+(pm ·xi−1) = 0,

and suppose such choices are quasilinear rationalizable by U(x)+y. As xi is optimal

from pi we have pi · xj − 1 ≥ U(xj)−U(xi). Similarly pj · xm− 1 ≥ U(xm)−U(xj),

and pm · xi − 1 ≥ U(xi)− U(xm). From the three inequalities, we obtain

0 = (pi · xj − 1) + (pj · xm − 1) + (pm · xi − 1)

≥ U(xj)− U(xi) + U(xm)− U(xj) + U(xi)− U(xm)

= 0 .

Since the inequality in the previous equation has to be an equality, pi · xj − 1 =

U(xj)−U(xi), pj ·xm−1 = U(xm)−U(xj), and pm ·xi−1 = U(xi)−U(xm). Thus,

xj is optimal at prices pi, xm is optimal at price pj , and xi is optimal at price pm.
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Furthermore, suppose U is differentiable. Since both xi and xj are optimal from pi,

we can infer that (for interior solutions) the MRS at both bundles is given by the

price ratios of pi; similarly, we can conclude that xj and xm have the same MRS

and that xm and xi also do (all for interior solutions).

As in the previous sections, we focus on indifferences to obtain differentiability of

the utility function. As explained in the previous example, we infer such indifferences

through the sequences of cyclical monotonicity equal to zero, which we call Q0-

sequences.

Definition A.6. A Q0-sequence is a sequence of unique observations (m`)`∈[L] such

that

(pmL · xm1 − 1) + (pm1 · xm2 − 1) + (pm2 · xm3 − 1) + . . .+ ·(pmL−1xmL − 1) ≤ 0

As with H1-sequences in Section II, including a weak inequality instead of equal-

ity ensures that the data set modification finishes in a finite number of steps. Fur-

thermore, if the previous inequality is strict, we already know that the data set is

not quasilinear rationalizable.

We define the quasilinear modification similarly to the homothetic one (Defini-

tion A.3). The primary difference is that prices do not need to be scaled in this

case, as the budget constraint is nonbinding.

Definition A.7. For any Q0-sequence s = (m`)`∈[L] let IQ (s) = {pm`}`∈[L]. Fur-

thermore, denote by SQ(i) the set of all Q0-sequences ending in i. The quasilinear

modification of D, ΓQ(D), is ΓQ(D) =
(
ri,Q, xi

)
i∈[N ]

, where

ri,Q =
∧ ⋃

s∈SQ(i)

IQ(s) .

Every Q0-sequence s ending in i yields information about bundles that are in-

different to xi; the previous definition collects all such bundles in IQ(s) and then
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collects all the bundles from the different sequences (by taking the union of the

IQ(s)s for different Q0-sequences finishing in i). This process yields all the bundles

revealed indifferent to xi.8 We take the set of all observations whose choices we can

infer are indifferent to xi. Then, the quasilinear modification replaces the price pi

by the meet of prices in such a set. Since quasilinear rationalization is a different

notion of rationalization, we need a result analogous to Proposition 1 for this notion.

Proposition A.4. Let U be well-behaved and differentiable. D is quasilinear ratio-

nalizable by U(x) + y if, and only if, ΓQ(D) also is.

The following result is the equivalent to Proposition 2 for quasilinear utilities.

Proposition A.5. Suppose D = ΓQ(D). Then D is quasilinear rationalizable if, and

only if, it is quasilinear rationalizable by U(x)+y, where U is infinitely differentiable.

Our final result provides a characterization and test for quasilinear rationaliza-

tion by U(x) + y when U is differentiable. The proof proceeds similarly as in the

previous theorems.

Theorem A.3. Let DQ∧ be the fixed point of ΓQ, starting from D. The following

are equivalent:

Q-1) D is quasilinear rationalizable by U(x) + y and U is differentiable.

Q-2) DQ∧ is quasilinear ratinoalizable (i.e., is cyclically monotone).

Q-3) For two bundles xi, xj, denote by xi ≈Q∧ xj the existence of a Q0-sequence DQ∧
containing both i and j. There are numbers ui > 0 and µi ≥ 0 such that

ui > uj + 1− pi · xj + µi · xj whenever xi 6≈Q xj (Q0)

ui = uj + 1− pi · xj + µi · xj whenever xi ≈Q xj (Q2)

pi − µi = pj − µj whenever xi ≈Q xj (Q3)

8Note that the indifferences inferred from Q0-sequences include the ones inferred by the revealed
indifferent relation presented in Definition 1.
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pi − µi � 0 for all i ∈ [N ] (Q4)

µi · xi = 0 for all i ∈ [N ] (Q5)

Q-4) D is quasilinear rationalizable by U(x) + y and U is infinitely differentiable.

IV Proofs

IV.I Proofs of Section I

Proof of Lemma A.1. Denote by ∼p the revealed indifferences in D, and ∼r the ones

in Γ(D) = (ri, xi)i∈[N ]. Since xi = xj =⇒ xi ∼p xj , we have xi = xj =⇒ ri = rj .

Since Γ(D) is rationalizable by a strictly concave utility, it satisfies SARP. Hence

xi 6= xj =⇒ xi 6∼r xj , and Γ(Γ(D)) = Γ(D).

Proof of Proposition A.1. Sufficiency is immediate. For necessity suppose D is ra-

tionalizable by a strictly concave utility. Since D satisfies SARP, it satisfies GARP

and xi 6= xj =⇒ xi 6∼ xj . By Lemma 3 there are numbers ui ∈ R and λi > 0

such that xi 6= xj implies ui > uj + λi(1− pi · xj) and xi = xj implies ui = uj and

λi = λj .

SetM > 0 and define the function g : RK → R+ by g(x) =
(
M + ||x||2

)1/2−M 1/2,

which is continuous, strictly convex, and satisfies g(0) = 0, and g(x) > 0 for x 6= 0

(see Matzkin & Richter, 1991). As N <∞ and λi pik > 0 for all i ∈ [N ] and k ∈ [K],

there is ε > 0 small enough such that

ui − εg(xi − xj) > uj + λi(1− pixj) whenever xi 6= xj ; and (3)

λipik > ε for all i ∈ [N ], k ∈ [K] . (4)

For each i ∈ [N ] define the function φi : RK → R by φi(x) = ui−λi(1−pi ·x)−εg(x−

xi), which is continuous, strictly concave, and strictly increasing.9 Furthermore,

9φi(·) is strictly increasing as for all k ∈ [K] we have ∂φi(x)/∂xk = λipik − µik −
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since D = Γ(D) we have xi = xj =⇒ pi = pj . Hence xi = xj implies φi(x) = φj(x)

for all x.

Define V : RK → R by

V (x) = min
i∈[N ]

φi(x) .

Since V (·) is the minimum of finitely many functions and all of them are continuous,

strictly increasing, and strictly convex, it inherits these three properties. Further-

more, from (3) it follows that φ(xi) < φj(xi) whenever xi 6= xj . Together with the

fact that φi = φj whenever xi = xj , this implies that V (xi) = ui and V (x) = φi(x)

in a neighborhood of xi for every i ∈ [N ]. Hence, there is η > 0 small enough

such that for all i ∈ [N ] and ξ ∈ B(η) we have V (xi − ξ) = φi(xi − ξ). Define

Ũ(x) = (V ? ρη)(x), where ρη is the function defined in the Proof of Proposition 2

(Appendix C), but using the value of η defined here. Then Ũ is continuous, infinitely

differentiable, strictly concave and strictly increasing.

For every i ∈ [N ] we have

Ũ(xi) =

∫
B(η)

[
min
j∈[N ]

φj(xi − ξ)
]
ρη(ξ) dξ

=

∫
B(η)

φi(xi − ξ)ρη(ξ) dξ

=

∫
B(η)

[
ui − λi(1− pi · (xi − ξ))− εg(−ξ)

]
ρη(ξ) dξ

=
[
ui − λi(1− pi · xi)

] ∫
B(η)

ρη(ξ) dξ − λi pi ·
∫
B(η)

ξρη(ξ) dξ−

− ε
∫
B(η)

g(−ξ)ρη(ξ) dξ

= ui − ε
∫
B(η)

g(ξ)ρη(ξ) dξ (5)

The last equality follows from pi · xi = 1,
∫
B(η) ρη(ξ)dξ = 1,

∫
B(η) ξρη(ξ)dξ = 0, and

g(x) = g(−x).(
g(x) +M

1/2
)−1

εxk > λi pik − µik − ε > 0. The last inequality follows from (4).
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Take x satisfying x 6= xi and pi · x ≤ 1. Then

Ũ(x) =

∫
B(η)

[
min
j∈[N ]

φj(x− ξ)
]
ρη(ξ) dξ

=

∫
B(η)

[
ui − λi(1− pi · (x− ξ))− εg(x− ξ − xi)

]
ρη(ξ) dξ

=
[
ui − λi(1− pi · x)

] ∫
B(η)

ρη(ξ) dξ − λipi ·
∫
B(η)

ξρη(ξ) dξ−

− ε
∫
B(η)

g(x− ξ − xi)ρη(ξ) dξ

≤ ui − ε
∫
B(η)

g((x− xi)− ξ)ρη(ξ) dξ

= ui − ε
∫
B(η)

g(ξ + (xi − x))ρη(ξ) dξ

< ui − ε
∫
B(η)

[
g(ξ) +∇g(ξ) · (x− xi)

]
ρη(ξ) dξ

= Ũ(xi)− ε(x− xi) ·
∫
B(η)

ξ
ρη(ξ)

(M + ||ξ||2)1/2
dξ

= Ũ(xi)

The second line follows from i ∈ [N ], and the definition of φi; the third one rear-

ranges terms; the fourth one from
∫
B(η) ρη(ξ)dξ = 1,

∫
B(η) ξρη(ξ)dξ = 0, pi · x ≤ 1,

and λi > 0; the fifth one from symmetry of g(x) = g(−x); the sixth one from the

strict convexity of g;10 the seventh one rearranges terms and replaces (5) and ∇g(ξ);

and the last one from the fact that
ρη(ξ)

(M+||ξ||2)1/2
is symmetric around zero, thus the

integral is equal to zero.

Finally, let U be the restriction of Ũ to RK+ . Then U is strictly increasing, strictly

concave, infinitely differentiable, and rationalizes D.

Proof of Theorem A.1. That Sa-1) implies Sa-2) follows from Proposition 1. To see

that Sa-2) implies Sa-3) note that if Γ(D) is rationalizable by a strictly concave

utility then Γ(D) = Γ(Γ(D)) (Lemma A.1). Then we can take the numbers ui and

10Strict convexity of g implies g(x) + ∇g(x) · (x − y) > g(y) whenever x 6= y (with equality if
x = y). The inequality follows replacing x = ξ and y = ξ + (xi − x).
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λi from Lemma 3 applied to Γ(D) and define µi = λi(pi−ri); it is straightforward to

see that (ui, λi, µi) satisfy all the conditions. Starting from Sa-3) we can construct

an infinitely differentiable and strictly concave utility that smoothly rationalizes

D by a construction similar to the one in the proof of Proposition A.1; the only

differences are that in this case φi = ui − λi(1 − pi · x) − µi · x − εg(x − xi) and

that to show that Ũ(x) < Ũ(xi) whenever pi · x ≤ 1 we need to assume x ≥ 0

(which is inconsequential for the purposes of our proof). That Sa-4) implies Sa-1)

is immediate.

IV.II Proofs of Section II

Lemma A.2. Let ≈H be defined by xi ≈H xj if there is an H1-sequence containing i

and j. If D = ΓH(D) and D is rationalizable by a homothetic utility, then xi ≈H xj

if, and only if, (pi · xj)(pj · xi) = 1.

Proof. Since D is rationalizable by a homothetic utility it satisfies HARP (Varian,

1983), hence any H1-sequence is equal to one. Necessity follows from the definition

of an H1-sequence (Definition A.2). For necessity suppose xi ≈H xj ; then there is

an H1-sequence (m`)`∈[L] such that `′ = i and (without loss of generality) L = j.

By definition of ΓH , and since D = ΓH(D), we have

pj ≤

(
L−1∏
`=`′

pm` · xm`+1

)−1
pi .

Since pi · xi = 1,

pj · xi ≤

(
L−1∏
`=`′

pm` · xm`+1

)−1
(6)
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Similarly, by definition of ΓH , and since D = ΓH(D), we have

pi ≤

(
(pj · xm1)

`′−1∏
`=1

pm` · xm`+1

)−1
pj ;

which, as pj · xj = 1, implies

pi · xj ≤

(
(pj · xm1)

`′−1∏
`=1

pm` · xm`+1

)−1
.

Multiplying the previous equation and (6) we get

(pi · xj)(pj · xi) ≤

(
(pj · xm1)

L−1∏
`=1

pm` · xm`+1

)−1
.

Since (m`)`∈[L] is an H1-sequence and j = L, the last equation implies (pi · xj)(pj ·

xi) ≤ 1. Finally, since D satisfies HARP we have (pi · xj)(pj · xi) ≥ 1, which implies

the desired result.

Lemma A.3. Let Z(i) be the set of all finite sequences of observations (m`)`∈[L]

satisfying xmL = xi. Define

vi = min
Z(i)

(pm1 · xm2)(pm2 · xm3) . . . (pmL−1 · xi)

If D satisfies HARP and D = ΓH(D), then vi ≤ vj pj · xi for all i, j ∈ [N ], vi =

vj pj ·xi whenever xi ≈H xj, and there is i′ ∈ [N ] such that vj < vmpm ·xj whenever

xi
′ ≈H xj and xi

′ 6≈H xm.

Proof. As D satisfies HARP, by the proof of Theorem 2 in Varian (1983) we know

that vi is well defined; this is, that the minimum is achieved. Furthermore, it follows

from the same proof that vi ≤ vj pj · xi for all i, j. Since pi � 0 and xi > 0 for all

i, we have vi > 0.

First we show that vi = vjpj · xi whenever xi ≈H xj . By Lemma A.2, xi ≈H xj
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implies (pj · xi)(pi · xj) = 1. As vi ≤ vj pj · xi and vj ≤ vi pi · xj we have

vi ≤ vj (pi · xj)(pj · xi)
pi · xj

= vj
1

pi · xj
≤ vi .

Therefore all the inequalities have to be equalities; in particular vi pi · xj = vj .

We show that there is i′ ∈ [N ] such that i′ ∈ [N ] such that vj < vmpm · xj

whenever xi
′ ≈H xj and xi

′ 6≈H xm by contradiction. Suppose for every i ∈ [N ]

there are xj ≈H xi and xm 6≈H xi such that vj = vm pm · xj . Since xj ≈H xi,

Lemma A.2 implies (pi · xj)(pj · xi) = 1. Hence vm (pm · xj)(pj · xi) = vj(pj · xi) =

vi(pi · xj)(pj · xi) = vi. Thus we can construct an infinite sequence (xm`)`∈[L] such

that, for all `, xm` ≈H xm`+1 and xm` 6≈H xm`+2 , and satisfies

vm1 = vm2(pm2 · xm1) = vm3(pm3 · xm2)(pm2 · xm1) = . . . = vm`
`−1∏
s=1

pms+1 · xms = . . .

Since the sequence is infinite and there are finitely many observations, there have

to be `′, `′′, with `′ + 2 < `′′ such that m`′ = m`′′ . Then

vm`′
`′−1∏
`=1

pm`+1 ·xm` = vm`′′
`′′−1∏
`=1

pm`+1 ·xm` = vm`′′

(
`′−1∏
`=1

pm`+1 · xm`
)(

`′′−1∏
`=`′

pm`+1 · xm`
)
.

Since vm`′ = vm`′′ and pm
′
` = pm

′′
` we have

1 =
`′′−1∏
`=`′

pm`+1 · xm` = (pm`′+1 · xm`′ )(pm`′+2 · xm`′+1) . . . (pm`′ · xm`′′−1) .

Therefore xm
′
` ≈H xm`′+2 , a contradiction.

Lemma A.4. If D satisfies HARP and D = ΓH(D) then there are numbers ui > 0

such that ui pi · xj > uj whenever xi 6≈H xj and ui pi · xj = uj whenever xi ≈H xj.

Proof. We show the result by induction of N . If N = 1 then u1 = 1 satisfies the

conditions.
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Suppose the conditions hold for any database of N − 1 or less elements, and

take D comprised of N observations. Take the numbers vi defined in Lemma A.3

and i′ such that vj < vmpm · xj whenever xi
′ ≈H xj and xi

′ 6≈H xm. Denote

E = {i ∈ [N ] : xi ≈H xi
′} and D = [N ] \ E. If D = ∅, Lemma A.3 imply that the

numbers vi satisfy the conditions.

If D 6= ∅, then (pi, xi)i∈D is a data set comprised of N−1 or less observations. By

induction hypothesis there are numbers ũm > 0 for m ∈ D such that the conditions

hold. Take the numbers vi defined in Lemma A.3 and define

α = min
i∈I

min
m∈D

vm pm · xi

vi
− 1 > 0

ui =
(

1 +
α

2

)
vi for every i ∈ E .

Then

ui pi · xm > vm whenever i ∈ E and m ∈ D, (7)

vm pm · xi > ui whenever i ∈ E and m ∈ D, (8)

ui pi · xj = uj whenever i, j ∈ E . (9)

Take a sequence βn → 1, where βn ∈ (0, 1) for all n, and for each m ∈ D and n ∈ N

define wm(n) = (vm)β
n

(ũm)1−β
n
. Take any m,m′ ∈ D and n ∈ N. If xm ≈H xm

′

wm(n) pm · xm′ = (vm pm · xm′)βn(ũm pm · xm′)1−βn = (vm
′
)β
n

(ũm
′
)1−β

n
= wm

′
(n) ;

and if xm 6≈H xm
′

wm(n) pm · xm′ = (vm pm · xm′)βn(ũm pm · xm′)1−βn > (vm
′
)β
n

(ũm
′
)1−β

n
= wm

′
(n) .
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Since wm(n)→ vm for every m ∈ D, for n0 large enough we have

ui pi · xm > wm(n0)

wm(n0) p
m · xi > ui

whenever i ∈ E and m ∈ D .

Setting um = wm(n0) for all m ∈ D assures that the numbers ui satisfy the desired

properties.

Lemma A.5. If D satisfies HARP and D = ΓH(D), there exist an open set S

and a strictly increasing, concave, and infinitely differentiable function f : S → R,

satisfying the following properties:

1.
(
RK+ \ {0}

)
⊂ S;

2. For every x ∈ S there is a unique value α(x) > 0 satisfying f(α(x)−1x) = 1.

3. f (xi/f(xi)) ≥ f(y) whenever and pi · y ≤ 1/f(xi) pi · xi

Proof. Take ui > 0 from Lemma A.4 and define φi(x) = uipi · x, and V (x) =

mini∈[N ] φ
i(x). Since φi is strictly increasing, concave and homogeneous of degree

one, V inherits all these properties. Furthermore, V (x) > 0 whenever x > 0.

By Lemma A.4, φi(x) = φj(x) for all x whenever xi ≈H xj , and V (xi) = ui.

Furthermore, there is κ small enough such that, for every ξ ∈ B(κ), φi(xi − ξ) =

φj(xi − ξ) whenever xi ≈H xj and φi(xi − ξ) < φj(xi − ξ) whenever xi 6≈H xj .

For every i ∈ [N ] define yi = V (xi)−1xi, and note that V (yi) = φi(yi) = 1.

Let v = maxi∈[N ] V (xi) > 0 and let η = κmin{1, 1/v} > 0. Define Ũ(x) = (V ?

ρη)(x), where ρη is the function defined in the Proof of Proposition 2 (Appendix C),

but using the value of η defined here. Then Ũ is strictly increasing, concave, and

infinitely differentiable.

Let

S =
⋂
i∈[N ]

{
x ∈ RK+ : φi(x) > 0

}
.
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Since each function φi is affine, the sets
{
x ∈ RK+ : φi(x) > 0

}
are open, hence S

also is.

Let f : S → R be the restriction of Ũ to S. We now show the required properties,

following the same enumeration as the statement of the Lemma.

1. From (H4), for every x > 0 we have φi(x) > 0 for all i ∈ [N ]. Therefore(
RK+ \ {0}

)
⊂ S.

2. Take an arbitrary x ∈ S; we show that there is a unique α(x) such that

f(α(x)1x) = 1. Since x ∈ S, we have φi(x) = ui pi · x > 0 for all i ∈ [N ],

therefore (as [N ] is finite) mini∈[N ] u
i pi · x > 0. Hence for β > 0 small enough

β−1 min
i∈[N ]

ui pi · x > 1 + max
j∈[N ]

uj pj · (η1) (10)

Thus

f(β−1x) =

∫
B(η)

min
i∈[N ]

ui pi · (β−1x− ξ)ρη(ξ) dξ

≥
∫
B(η)

(
β−1 min

i∈[N ]
ui pi · x− max

j∈[N ]
uj pj · ξ

)
ρη(ξ) dξ

≥
∫
B(η)

(
β−1 min

i∈[N ]
ui pi · x− max

j∈[N ]
uj pj · (η1)

)
ρη(ξ) dξ

>

∫
B(η)

ρη(ξ) dξ

= 1

The first inequality splits terms; the second one follows from ξ ∈ B(η); the

third one from (10); and the last one replaces
∫
B(η) ρη(ξ) dξ = 1. Fix i ∈ [N ].

Since Ũ is continuous

lim
β→∞

f(β−1x) = lim
β→∞

Ũ(β−1y)

= Ũ(0)
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=

∫
B(η)

min
j∈[N ]

φj(0− ξ)ρη(ξ) dξ

≤
∫
B(η)

φi(0− ξ)ρη(ξ) dξ

= ui pi ·

(
0

∫
B(η)

ρη(ξ) dξ −
∫
B(η)

ξρη(ξ) dξ

)
= 0

Since f inherits continuity from Ũ and limβ→∞ β
−1x = 0, the Intermediate

Value Theorem implies that there is α(x) ∈ (β,∞) satisfying f(α(x)−1x) = 1.

We show that α(x) is unique by showing that f(αx) is strictly increasing in

α. Take γ > α > 0; then

f(γx)− f(αx) =

∫
B(η)

min
j∈[N ]

φj(γx− ξ)ρη(ξ) dξ −
∫
B(η)

min
j∈[N ]

φj(αx− ξ)ρη(ξ) dξ

=

∫
B(η)

(
min
j∈[N ]

φj(γx− ξ)− min
j∈[N ]

φj(αx− ξ)
)
ρη(ξ) dξ

≥
∫
B(η)

(
min
j∈[N ]

φj(γx− ξ)− φj(αx− ξ)
)
ρη(ξ) dξ

= (γ − α)

∫
B(η)

min
j∈[N ]

ui pi · x ρη(ξ) dξ

> 0 .

where the first inequality follows from min f(x) − min g(x) ≥ min(f(x) −

g(x)),11 and the last one from γ > α and x ∈ S.

3. As η ≤ κ, V (xi − ξ) = φi(xi − ξ) whenever ξ ∈ B(η). Hence

f(xi) =

∫
B(η)

V (xi − ξ)ρη(ξ) dξ

=

∫
B(η)

φi(xi − ξ)ρη(ξ) dξ

11Let x0 be the minimizer of f(x). Then min f(x)−min g(x) ≥ min f(x)−g(x0) = f(x0)−g(x0) ≥
min(f(x)− g(x)).
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=

∫
B(η)

ui pi · (xi − ξ)ρη(ξ) dξ

= ui pi ·

(
xi
∫
B(η)

ρη(ξ) dξ −
∫
B(η)

ξρη(ξ) dξ

)
= ui pi · xi

= ui

Therefore xi/f(xi) = yi. In a similar way, as η ≤ κ/v ≤ κ/V (xi), whenever

ξ ∈ B(η) we have V (xi)ξ ∈ B(V (xi)η) ⊂ B(κ), and

V (yi − ξ) =
1

V (xi)
V (V (xi)yi − V (xi)ξ)

=
1

V (xi)
V (xi − V (xi)ξ)

=
1

V (xi)
φi(xi − V (xi)ξ)

=
1

V (xi)
φi(V (xi)yi − V (xi)ξ)

= φi(yi − ξ) .

Hence

f(yi) =

∫
B(η)

V (yi − ξ)ρη(ξ) dξ

= ui pi ·

(
yi
∫
B(η)

ρη(ξ) dξ −
∫
B(η)

ξρη(ξ) dξ

)
= ui pi · yi

= 1 .

Finally, take y such that pi · y ≤ pi · yi. We have

f(y) =

∫
B(η)

min
j∈[N ]

φj(y − ξ)ρη(ξ) dξ
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≤
∫
B(η)

ui pi · (y − ξ) ρη(ξ) dξ

= ui pi ·

(
y

∫
B(η)

ρη(ξ) dξ −
∫
B(η)

ξρη(ξ) dξ

)
≤ ui pi · yi

= 1

= f(yi)

This completes the proof.

Proof of Proposition A.3. Suffieincy is immediate. For necessity take the open set

S and the function f : S → R from Lemma A.5. For every x ∈ S take the unique

value α(x) > 0 such that f(α(x)−1x) = 1 and define W : S ∪ {0} → R by

W (x) =


α(x) if x ∈ S

0 if x = 0

(11)

From the previous definition we have W (x) > 0 whenever x ∈ S. Furthermore,

from the proof of Lemma A.5 we have that f(αx) is strictly increasing in α. Hence

both f and W have the same upper and lower contour sets around one; this is,

W (x) ≥ 1 ⇐⇒ f(x) ≥ 1, and W (x) > 1 ⇐⇒ f(x) > 1.

Now we show that W is continuous, strictly increasing, concave, infinitely dif-

ferentiable in S, homothetic, and rationalizes the data.

- W is homothetic: Take λ > 0. Since W (0) = 0 we have λW (0) = W (λ0).

If x 6= 0 we have f(W (x)−1x) = 1, and 1 = f(W (λx)−1λx). Since there is a

unique value α(x) > 0 such that f(α(x)−1x) = 1, we have α(x) = W (x)−1 =

W (λx)−1λ, therefore λW (x) = W (λx).

25



- W is strictly increasing: Take x, y such that x > y. If y = 0 by definition

of W we have W (x) > 0 = W (y). If y 6= 0, towards a contradiction suppose

U(y) ≥ U(x) > 0, which implies W (x)−1x > W (y)−1y. As f is strictly

increasing, we have f(W (y)−1y) < f(W (x)−1x). But the definition of W

implies f(W (y)−1y) = f(W (x)−1x) = 1, a contradiction.

- W is concave: Denote by P fa = {x ∈ RK+ : f(x) ≥ a} and PWa = {x ∈ RK+ :

W (x) ≥ a} the superlevel sets of f and W at a, respectively. Since both W

and f have the same contour sets around one, we have P f1 = PW1 . Since f

is concave, P f1 is convex, and PW1 also is. Furthermore, homotheticity of W

implies that for any a ≥ 0 we have PWa = {a x ∈ RK+ : x ∈ PW1 }, hence PWa is

convex as well. This implies that the epigraph of W is convex, therefore W is

concave.

- W is continuous: For continuity at 0, take xn → 0 (xn ∈ S) and δ > 0, and

denote by 1 the K-dimensional vector with all components equal to one. Since

xn → 0, for n large enough we have xmk < W (1)−1δ for all k ∈ [K] and m ≥ n.

Thus, as f is strictly increasing, f(δ−1xm) < f(W (1)−11) = 1. Homogeneity

of degree one implies W (xm) < δ. Since W (xn) ≥ 0 for all n and δ is arbitrary,

we have limn→∞W (xn) = W (0) = 0.

To see that W is continuous on S take a, b such that 0 < a < b. Since W (x) > 0

for all x ∈ S,

W−1((a, b)) = W−1((a,∞) ∩ (0, b)) = W−1((a,∞)) ∩W−1((0, b))

Furthermore

W−1((a,∞)) = {x ∈ S : W (x) > a}

=
{
x ∈ S : f(a−1 x) < 1

}
=
{
a−1 y ∈ S : f(y) < 1

}
.
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Since f is continuous, the set
{
y ∈ RK+ : f(y) < 1

}
is open, hence U−1((a,∞))

also is. Similarly we can show that U−1((0, b)) is open. As the intersection of

two open sets is open, we conclude that W is continuous in S. Therefore W

is continuous.

- W is infinitely differentiable in S: Denote by Ifa = {x ∈ RK+ : Z(x) = a} and

IWa = {x ∈ RK+ : W (x) = a} the level sets of f and W at level a, respectively.

Since f and W have the same contour sets around one, we have If1 = IU1 .

Since f is infinitely differentiable, If1 is a K − 1 dimensional C∞ manifold

(see Debreu, 1972), and IW1 also is. Furthermore, as W is homogeneous of

degree one, for every a > 0 we have IWa = {ax ∈ RK+ : x ∈ IW1 }, hence IWa

is also a K − 1 dimensional C∞ manifold. Since W is continuous, strictly

increasing, homogeneous of degree one, and all its indifference sets in S are

K − 1 dimensional C∞ manifolds, Theorem 1 in Neilson (1991) implies that

W is infinitely differentiable in S.12

- W (x) rationalizes D: Take i ∈ [N ] and x satisfying pi · x ≤ 1. Recall that

yi = f(xi)−1xi. Since f(yi) = 1, then f(y) ≤ 1 whenever pi · y ≤ pi · yi. As

f and W have the same contour sets around 1 and f(yi) = 1, then W (y) ≤ 1

whenever pi · y ≤ pi · yi. Furthermore, as f(yi) = 1, we have W (yi) = 1 as

well. Hence as W is homothetic W (xi) = W (f(xi)yi) = f(xi)W (yi) = f(xi)

and whenever pi · x ≤ 1

W (x) = f(xi)W

(
pi · xi

f(xi)
x

)
= f(xi)W ((pi · yi)x) ≤ f(xi) = W (xi) .

The first equality follows from W being homogeneous of degree one and pi·xi =

1, the second from the definition of yi, and the inequality from pi · (pi · yi)x ≤

pi · yi, which implies W ((pi · yi)x) ≤W (yi) = 1. Therefore W rationalizes D.

12Although Theorem 1 in Neilson (1991) is developed for a function whose domain is RK++, the
proof does not uses anything particular about that domain and hence applies to every open domain.
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Let U : RK+ → R the restriction of W to RK+ . Then U is continuous, strictly

increasing, infinitely differentiable in RK+ \ {0}, homothetic, and rationalizes the

data.

Proof of Theorem A.2. That H-1) implies H-2) follows from an iterative applica-

tion of Proposition 1. That H-2) implies H-3) follows from Lemma A.4 applied to

DH∧ = (qi,H , xi)i∈[N ], and defining µi = ui(pi − qi,H). Starting from H-3) we can

construct an infinitely differentiable (everywhere except at 0) and homothetic utility

that smoothly rationalizes D by a construction similar to the one in the proof of

Proposition A.3; the only differences are that in this case φi = (uipi − µi) · x and

that property 3 in Lemma A.5 applies only for y > 0 (which is inconsequential for

the purposes of our proof). Finally, that H-4) implies H-1) is immediate.

IV.III Proofs of Section III

Lemma A.6. Suppose D is quasilinear rationalizable by U(x) + y, where U is dif-

ferentiable, and (m`)`∈[L] is such that

pmL · (xm1 − xmL) +
L−1∑
`=1

pm` · (xm` − xm`+1) = 0 . (12)

Then ∇U(xm1) = ∇U(xm2) = . . . = ∇U(xmL).

Proof. Since D is quasilinear rationalizable by U(x)+y, we have pm` ·(xm`+1−xm`) ≥

U(xm`+1)− U(xm`) for all ` ∈ [L− 1], and pmL · (xm1 − xmL) ≥ U(xm1)− U(xmL).

Replacing into (12) we obtain

0 = pmL · (xm1 − xmL) +

L−1∑
`=1

pm` · (xm`+1 − xm`)

≥ U(xm1)− U(xmL) +

L−1∑
`=1

U(xm`+1)− U(xm`)

= 0 .
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Since the inequality of the previous equation has to be an equality, we conclude that

pm` · (xm`+1 − xm`) = U(xm`+1) − U(xm`), i.e. U(xm`+1) is optimal at price p`, for

all ` ∈ [L − 1]. Similarly, xm1 is optimal from price pmL . Since U is differentiable,

Theorem 2 in Jeyakumar et al. (2004) implies ∇U(xm`) = ∇U(xm`+1) for all ` ∈

[L − 1] and ∇U(xmL) = ∇U(xm1). Therefore ∇U(xm1) = ∇U(xm2) = . . . =

∇U(xmL).

Proof of Proposition A.4. For necessity suppose D is quasilinear rationalizable by

U(x)+y. From the first order conditions of the maximization problem, for every i ∈

[N ] we have ∇U(xi) = pi−µi ≤ pi, where µi ≥ 0. Furthermore, the complementary

slackness conditions on µi imply µi · xi = 0; therefore ∇U(xi) · xi = pi · xi = 1.

Take i ∈ [N ] and s = (m`)`∈[L] ∈ SQ(i) a Q0-sequence satisfying mL = i. Since

D is quasilinear rationalizable by U , then ∇U(xm`) = pm` + µm` ≤ pm` for all

` ∈ [L]. Furthermore, Lemma A.6 implies ∇U(xi) = ∇U(xm`) for every ` ∈ [L];

hence∇U(xi) ≤ p for every p ∈ IQ(s). Thus∇U(xi) ≤
∧
IQ(s). As s is an arbitrary

sequence in SQ(i) we conclude that

∇U(xi) ≤
∧

s∈SQ(i)

∧
IQ(s) =

∧ ⋃
s∈SQ(i)

IQ(s) = ri,Q .

Define f : RK+ × R → R by f((x, y)) = U(x) − y. Since U is concave, f also is.

Hence for every i ∈ [N ] and x ∈ RK+

U(xi)− ri,Q · xi −
(
U(x)− ri,Q · x

)
= f(xi, ri,Q · xi)− f(x, ri,Q · x)

≥ ∇f(xi, ri,Q · xi) ·
(
(xi, ri,Q · xi)− (x, ri,Q · x)

)
= ∇U(xi) · (xi − x)−

(
ri,Q · xi − ri,Q · x

)
= pi · xi −∇U(xi) · x− ri,Q · xi + ri,Q · x

≥ pi · xi − ri,Q · x− ri,Q · xi + ri,Q · x

= (pi − ri,Q) · xi
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≥ 0 .

The first inequality follows form the concavity of f , the second from ∇U(xi) ≤ ri,Q

and x ≥ 0, and the last one from pi ≥ ri,Q and xi > 0. We conclude that ΓQ(D) is

quasilinear rationalizable by U(x) + y.

For sufficiency suppose ΓQ(D) is quasilinear rationalizable by U(x)+y. For every

i ∈ [N ], the Lagrangian for the maximization problem in D is U(x)+y−λ(pi ·x+y)+

µ·x. Take the values (xi, 1, pi−∇U(xi))i∈[N ]. Since U(x)+y quasilinear rationalizes

ΓQ(D), it is easy to see that these values satisfy the first order conditions of the

maximization problem in D. Finally, as U(x) is strictly increasing, differentiable,

and concave, U(x)+y also is. Therefore the first order conditions are sufficient, and

D is quasilinear rationalizable by U(x) + y.

Lemma A.7. Suppose D is quasilinear rationalizable and D = ΓQ(D). Then xi ≈Q

xj if, and only if, (pi · xj − 1) + (pj · xi − 1) = 0.

Proof. Sufficiency follows by definition of ≈Q. For necessity suppose D is cyclically

monotone and xi ≈Q xj . By definition of DQ∧ we have both pi ≤ pj and pj ≤ pi,

therefore pi = pj . Since pi · xi = pj · xj = 1, we have the desired result.

Lemma A.8. Let Z(i) be the set of all finite sequences of observations (m`)`∈[L]

satisfying xmL = xi. Define

vi = min
Z(i)

(pm1 · xm2 − 1) + (pm2 · xm3 − 1) + . . .+ (pmL−1 · xi − 1) .

If D is quasilinear rationalizable and D = ΓQ(D) then vi ≥ vj + 1− pi · xj for every

i, j ∈ [N ], vi = vj + 1 − pi · xj whenever xi ≈Q xj, and there is i′ ∈ [N ] such that

vm > vj + 1− pm · xj whenever xi
′ ≈Q xj and xi

′ 6≈Q xm.

Proof. That vi are well defined, is assured by cyclical monotonicity ofD, as whenever

an observation is repeated in the sequence, removing the cycle cannot increase the
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value. Hence there is a minimizer that has no cycles, and since the number of

sequences with no cycles is finite, the minimum exists. Let (xm`)`∈[L] ∈ Z(j) such

that vj = (pm1 ·xm2−1) + (pm2 ·xm3−1) + . . .+ (pmL−1 ·xj−1). Then by definition

of vi we have

vj + 1− pi · xj = (pm1 · xm2 − 1) + (pm2 · xm3 − 1) + . . .+ (pmL−1 · xj − 1) + (1− pi · xj)

≥ vi .

Take xi ≈Q xj . By Lemma A.7 we have 1−pi·xj = −(1−pj ·xi). As vi ≥ vj+1−pi·xj

and vj ≥ vi + 1− pj · xi we have

vi ≥ vj + (1− pi · xj)

= vj − (1− pj · xi)

≥ vi .

Hence all the inequalities have to be equalities, and in particular vi = vj+(1−pi ·xj).

Finally, towards a contradiction suppose for every i ∈ [N ] there are j,m ∈ [N ]

such that xi ≈Q xj , xi 6≈ xm, and vm = vj + 1− pm · xj . Since xi ≈Q xj we have

vm = vj + 1− pm · xj = vi + 1− pi · xj + 1− pm · xj

Thus we can construct an infinite sequence (xm`)∞`=1 such that for all ` odd we have

xm` ≈Q xm`+1 and xm` 6≈Q xm`+2 . Furthemore

vm1 = vm2 + (1− pm1 · xm2)

= vm3 + (1− pm2 · xm3) + (1− pm1 · xm2)

...

= vm` +

`−1∑
r=1

(1− pmr · xmr+1)
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...

As the sequence is infinite, there are `′, `′′ ∈ N such that `′ + 2 < `′′ and m`′ =

m`′′ . We have

vm`′ +

`′−1∑
`=1

(1− qm`,Q · xmr+1) = vm`′′ +

`′′−1∑
`=1

(1− qm`,Q · xm`+1)

= vm`′′ +

`′−1∑
`=1

(1− qm`,Q · xm`+1) +
`′′−1∑
`=`′

(1− qm`,Q · xm`+1)

Since vm`′ = vm`′′ and xm`′ = xm`′′

0 = (1− qm`′′−1,Q · xm`′ ) +
`′′−2∑
`=`′

(1− qm`,Q · xm`+1)

Hence xm`′ ≈Q xm`′+2 , a contradiction.

Lemma A.9. If D is cyclically monotone and D = Γ(D), then there are numbers

ui ∈ R such that ui > uj + 1− pi · xj whenever xi 6≈Q xj, and ui = uj + 1− pi · xj

whenever xi ≈Q xj.

Proof. We proceed by induction on the numbers of observations. If N = 1 then

u1 = 1 satisfies the conditions.

Suppose the conditions hold for any data set comprised of N − 1 or less obser-

vations, and take D comprised of N observations. Take the numbers vi defined in

Lemma A.8 and i′ ∈ [N ] such that vm > vi + 1 − pm · xi whenever xi
′ ≈Q xi and

xi
′ 6≈Q xm. Denote E = {i ∈ [N ] : xi ≈Q xi

′} and D = [N ] \ E. If D = ∅ then the

condition is assured by Lemma A.8.

If D 6= ∅, then (pi, xi)i∈D is a data set comprised of N − 1 or less observations.

By induction hypothesis there are numbers um for m ∈ D such that

um = um
′
+ 1− pm · xm′ for all m,m′ ∈ D .
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Take the numbers vi defined in Lemma A.8 and define

α = min
i∈E
m∈D

vm − vj + pm · xj − 1

ui = vi +
α

2
for all i ∈ E .

Hence

ui > vm + 1− pi · xm for all i ∈ E and m ∈ D

vm > ui + 1− pm · xi for all i ∈ E and m ∈ D

ui = uj + pi · xj for all i, j ∈ E .

Take a sequence βn → 1, where βn ∈ (0, 1) for all n, and for every m ∈ D define

wm(n) = βn vm + (1− βn)ũm .

Take any m,m′ ∈ D and n ∈ N. If xm ≈Q xm′ then

wm(n) = βn vm + (1− βn)um

= βn(vm
′
+ 1− pm · xm′) + (1− βn)(um

′
+ 1− pm · xm′)

= wm
′
(n) + 1− pm · xm′

and if xm 6≈Q xm′ then

wm(n) = βn vm + (1− βn)um

> βn(vm
′
+ 1− pm · xm′) + (1− βn)(ũm

′
+ 1− pm · xm′)

= wm
′
(n) + 1− pm · xm′
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Since wm(n)→ vm for every m ∈ D for n0 large enough we have

ui > wm(n0) + 1− pi · xm

wm(n0) > ui + 1− pm · xi
for all i ∈ E and m ∈ D .

Setting um = wm(n0) for every m ∈ D assures that the numbers ui satisfy the

desired properties.

Proof of Proposition A.5. Suffieincy is immediate. For necessity take D being quasi-

linear rationalizable and satisfying D = ΓQ(D). Take the numbers ui ∈ R from

Lemma A.9 and define the functions φi(x) = ui+pi ·x−1 and V (x) = mini∈[N ] φ
i(x).

Then each φi is continuous, concave, and strictly increasing, therefore V also is.

Moreover, if xi ≈Q xj then φi(x) = φj(x) for all x, and there is η > 0 such that

V (xi − ξ) = φi(xi − ξ) whenever ξ ∈ B(η). Define Ũ(x) = (V ? ρη)(x), where ρη is

the function defined in the Proof of Proposition 2 (Appendix C), but using the value

of η defined here. Then Ũ is continuous, infinitely differentiable, strictly concave

and strictly increasing. Moreover

Ũ(xi) =

∫
B(η)

(
ui + pi · (xi − ξ)− 1

)
ρη(ξ)dξ

= ui
∫
B(η)

ρη(ξ)dξ − pi ·
∫
B(η)

ξρη(ξ)dξ

= ui (13)

The second equality splits terms and replaces pi · xi = 1, and the third one follows

from
∫
B(η) ρη(ξ)dξ = 1 and

∫
B(η) ξρη(ξ)dξ = 0.

Let U be the restriction of Ũ to RK+ . For every x we have

U(x) =

∫
B(η)

V (x− ξ)ρη(ξ) dξ

≤
∫
B(η)

φi(x− ξ)ρη(ξ) dξ
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= [ui + pi · x− 1]

∫
B(η)

ρη(ξ) dξ − pi ·
∫
B(η)

ξρη(ξ) dξ

= ui + pi · x− 1

= U(xi)− pi · xi + pi · x .

The second line follows from i ∈ [N ]; the third one splits terms; the fourth one from∫
B(η) ρη(ξ)dξ = 1 and

∫
B(η) ξρη(ξ)dξ = 0; and the fifth one from pi cotxi = 1 and

(13). We conclude that D is quasilinear rationalizable by U(x)+y and U is infinitely

differentiable.

Proof of Theorem A.3. That Q-1) implies Q-2) follows from an iterative application

of Proposition A.4. That Q-2) implies Q-3) follows from taking the numbers ui from

Lemma A.9 applied to DQ∧ = (qi,Q, xi)i∈[N ], and defining µi = pi−qi,Q. Starting from

Q-3) we can construct an infinitely differentiable U such that U(x) + y quasilinear

rationalizes D by a construction similar to the one in the proof of Proposition A.5;

the only difference is that in this case φi = ui + (pi − µi) · x− y. Finally, that Q-4)

implies Q-1) is immediate.
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