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Abstract

We study the analysis of choices imperfectly aligned with the preference relation that drives

them. First, we develop a measure of decision-making quality that, unlike the existing ones,

ensures to asymptotically measure the distance between the subject’s choices and her underlying

preference (instead of some preference). We then use such a measure to propose a statistically

consistent preference estimator. Empirical results suggest consistency is a relevant property

when recovering preferences, especially for complex choice environments, compared to estimators

based on intuitive motivations.
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The econometric theory of demand does study human beings, but only

as entities having certain patterns of market behaviour; it makes no

claim, no pretence, to be able to see inside their heads.

Sir John R. Hicks (1956, p. 6)

1 Introduction

The problem of recovering preferences from choices is one of the oldest problems in economics,

dating back to Antonelli (1886). The focus on finite data starts with Samuelson (1938). It reaches

its seminal result in Afriat (1967) theorem, which shows that, in the classical consumer setting,

observed choices can be interpreted as driven by a preference relation if, and only if, they satisfy the

Generalized Axiom of Revealed Preferences (GARP). However, if a subject’s choices are an imper-

fect implementation of her preferences, she will (with enough observed choices) present violations

of GARP. This paper studies how to analyze individual choices that fail GARP.

Starting from the observation that most subjects fail GARP, several alternatives have been

proposed to measure how far a subject is from satisfying this axiom (Afriat, 1973; Houtman &

Maks, 1985; Varian, 1990; Echenique et al., 2011; Dean & Martin, 2016; de Clippel & Rozen,

2021). Such measures are usually interpreted as a proxy for decision making-quality or “economic

rationality.” However, a measure of decision-making quality should measure the distance between

an agent’s choices and her underlying preference; instead, distance from GARP only measures

the distance between an agent’s choices and some preference. Starting from this observation, we

develop a new measure of economic rationality that asymptotically measures the distance between

an agent’s choices and her underlying preference relation.

The main property to assure that our measure of decision-making quality is adequate is statis-

tical consistency; this is, as the sample size increases, the measured distance is likely close to the

distance between agent’s the choices and her underlying preference. The proposed measure com-

pares the revealed references (i.e., the preferences we can infer from the observations) with complete

and transitive preferences and looks for the preference that minimizes the disagreement between

the two. Computationally, we show that our measure can be reduced to solving the Minimum

Feedback Arc Set problem.

In order to achieve statistical consistency, we need to impose some structure both on the space of

potential preferences and the degree of misalignment between choices and preferences. Concerning

the space of preferences, we focus our attention on preferences that are continuous, that follow some

objective dominance criteria, for example, the idea that “more is better,” and that preferences

are Lipschitzian, which is motivated by requiring regularity on how indifference curves fit each

other (Mas-Colell, 1977, 1978). For the misalignment between choices and preferences, our main
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behavioral assumption is that revealed preferences (i.e., the preferences inferred from the data) are

more likely to be correct than not, and this has to hold for every subset of the space of bundles.

We use our measure of decision-making quality to propose an estimator of the agent’s prefe-

rences, which we call the Minimum Mistakes (MM) estimator. The MM estimator is built over two

complementary notions. First, it minimizes the number of disagreements between the estimated

and revealed preferences, which, given the properties of our rationality measure, assures its statisti-

cal consistency. Second, it follows the idea of partial efficiency (Afriat, 1973; Varian, 1990), which

assures that preferences are inferred not only between observed choices but between an observed

choice and every other bundle that was available when the choice was made. To develop our new

estimator, we propose a new version of the Afriat Theorem, specifically of its generalization by

Nishimura et al. (2017), which includes the possibility of disagreement between the rationalizing

preference and some revealed preferences, as well as the possibility of partial efficiency.

We implement our estimator into experimental data from several sources. Our sample comprises

5,345 subjects making choices under risk, choices under uncertainty, or social choices (playing

the dictator game), all under the experimental design of Choi et al. (2007b). We analyze our

estimator regarding how well it predicts choices out-of-sample (this is, choices not used in the

original estimation exercise) and compare it with the estimator derived from the Varian (1990)

Index (i.e., the Varian estimator). Our results show that the Varian estimator performs better in

most sub-samples where subjects choose between two goods (2D environments). In comparison,

the MM estimator performs better in all the sub-samples where subjects choose between three

goods (3D environments). We interpret these results in light of the Varian Index being motivated

by intuitive behavioral descriptions, usually developed in 2D examples, and the MM estimator

being motivated by formal properties (statistical consistency). Our results suggest that intuitive

explanations of behavior work well in simple environments like the ones usually used for examples

that motivate such intuitions. However, as choice problems become more complex and further away

from such examples, formal properties become a better tool for developing general estimators.

1.1 Related Literature

This paper contributes to the vast literature on revealed preferences. In particular, it addresses two

fundamental and closely related questions regarding subjects who fail GARP. The first question is

how to measure the misalignment between an agent’s choices and her underlying preferences (i.e.,

to measure decision-making quality). The second is how to recover such preference relation starting

from such choices.

The study of revealed preferences in finite data dates back to Samuelson (1938) and Houthakker

(1950), who propose the idea of revealed preferences to infer elements of a consumer’s preference

from her observed choices. The Afriat theorem (Afriat, 1967; Varian, 1982) identifies GARP

as necessary and sufficient for choices to be consistent with some preference relation. The Afriat
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theorem has been expanded in several directions, notably by Forges and Minelli (2009) for nonlinear

budget sets, Reny (2015) for infinite observed choices, and Nishimura et al. (2017) for general choice

spaces and preferences with more restrictive requirements.

The development analysis of subjects whose choices satisfy GARP has focused chiefly on how far

is a subject from satisfying this property, which is usually interpreted as decision-making quality.

The first of such measures is the Critical Cost Efficiency Index (CCEI), proposed by Afriat (1973)

based on partial efficiency (see Section 4.1 for a formal definition). The CCEI is defined as one minus

the highest partial efficiency level at which we can think of choices as coming from a preference

relation. Varian (1990) proposes a generalization in which different choices have different levels

of partial efficiency and proposes a measure that aggregates these levels into a single statistic.

Although they offer different interpretations, the indices proposed by Houtman and Maks (1985),

Echenique et al. (2011), and Dean and Martin (2016) can be considered different aggregations of

partial efficiency. de Clippel and Rozen (2021) and Echenique et al. (2022) take a different approach

and look at the minimum discrepancy between price rations and the marginal rate of substitution

for the data to be consistent.

The problem of identifying an agent’s preference from her choices starts with Mas-Colell (1977,

1978). He studies this possibility when choices and preferences are perfectly aligned (i.e., when

choices satisfy GARP). He shows that the underlying preference driving the choices can be asymp-

totically identified. Under imperfect misalignment between choices and preferences, Apesteguia

and Ballester (2015) and Chambers et al. (2021) study how to recover the underlying preference

from observed choices. Conceptually, these two papers are the closest to this one, although the

choice environments they study are different.1 From the two, Chambers et al. (2021) is the closest

regarding the tools used to develop our results.

Technically, our work relies upon several sources. First, we use the large-sample theory of

extremum-estimators (Amemiya, 1985; Newey & McFadden, 1994; Jennrich, 1969) and U-statistics

(Hoeffding, 1961). Second, we choose the closed-convergence topology as our topology in the space

of preference relations and use properties developed for such topology (Kannai, 1970; Hildenbrand,

1974; Grodal, 1974; Redekop, 1993; Border & Segal, 1994). Finally, we rely on the generalizations

of the Afriat Theorem by Forges and Minelli (2009) and Nishimura et al. (2017).

The remainder of the paper proceeds as follows. Section 2 describes the choice environment

and discusses the main definitions and assumptions. Section 3 proposes our measure of decision-

making quality, develops its properties, and presents a computation strategy. Section 4 proposes a

preference estimator based on the measure developed in the previous section. Section 5 implements

the estimator in experimental data. Finally, Section 6 concludes.

1Apesteguia and Ballester (2015) study choice environments with a finite number of alternatives and assumes
that all the preferences are strict. Chambers et al. (2021) study general spaces of alternatives and assume that the
consumer makes choices from pairwise of alternatives.
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2 Setup

2.1 Choice Environment

Our data set consists of N observations of an agent’s consumption decisions. The agent consumes

bundles of K nonnegative commodities; the consumption space is RK
+ .2 In each observation i ∈ [N ],

the agent faces a budget set Bi ⊂ RK
+ and chooses a bundle xi ∈ Bi. Since commodities are assumed

to be desirable, we define the upper boundary of a budget set as b(Bi) = {x ∈ Bi : y � xi =⇒ y /∈
Bi} and assume xi ∈ b(Bi) for all i. Following Forges and Minelli (2009), we impose the following

restrictions on the budget sets.

Assumption 1. Each budget set Bi is compact, comprehensive,3 and contains at least one element

x ∈ Bi satisfying x� 0.

Each budget set Bi induces a gauge gi, defined as gi(x) = inf{λ > 0 : x ∈ λBi}, where

λBi ≡ {λx : x ∈ Bi}. Given Assumption 1, Lemma 1 in Forges and Minelli (2009) assures that gi is

continuous, increasing, and homogeneous of degree one. Furthermore, the budget set and its upper

boundary can be characterized by Bi = {x ∈ RK
+ : gi(x) ≤ 1} and b(Bi) = {x ∈ RK

+ : gi(x) = 1}.4
For convenience, we define each budget set in the data set by its gauge gi. Hence, our data set is

D = (gi, xi)i∈[N ].

We assume an objective dominance relation � on RK
+ ; we interpret x� y as x being objectively

(weakly) better than y. Furthermore, we interpret x � y (where � is the asymmetric component

of �) as x being objectively strictly better than y. Following Nishimura et al. (2017), we impose

the following conditions on �.5

Assumption 2. The dominance relation � is a continuous preorder and extends ≥ (this is, ≥⊂ �

and >⊂ �).

Continuity of � is assumed because this property is fundamental for inference purposes; intui-

tively, continuity allows extrapolating from any preference to a neighborhood around it. � being

2We work with the following notation. N is the set of natural numbers and R the set of real numbers. R+ = {x ∈
R : x ≥ 0} is the set of positive numbers including zero, and R++ = {x ∈ R+ : x 6= 0} excludes it. For any M ∈ N we
set [M ] = {1, 2, . . . ,M}. A vector x ∈ RM is x = (x1, x2, . . . , xM ). The vectors 0 and 1 have all their elements equal
to zero and one, respectively (the context implies their dimensionality). For any two vectors x, y ∈ RM we write
x ≥ [�]y if xi ≥ [>]yi for all i ∈ [M ], and x > y if x ≥ y and x 6= y (≤, �, and < are defined similarly). A function
f : RM → R is increasing if x > y implies f(x) > f(y) and strictly increasing if x � y implies f(x) > f(y). For
x, y ∈ RM , ||x− y|| denotes the Euclidean distance, and x · y the dot product. A binary relation R on X is a subset
of X ×X. As usual, we write xRy as equivalent to (x, y) ∈ R and x/Ry as equivalent to (x, y) /∈ R. The asymmetric
component of R is P , defined by xPy if xRy and y /Rx, and its symmetric component is I, defined by xIy if xRy and
yRx. For sets X and Y , |X| and |Y | represent their respective cardinality, and X \ Y is the set difference of X and
Y . Finally, 1 {·} is the indicator function.

3A set B is comprehensive if for every x ∈ B and y ≤ x we have y ∈ B.
4Forges and Minelli (2009) also include the following assumption (Assumption H) in the requirements for the

budget set: “if x ∈ b(B) then kx ∈ B \ b(B) for all k ∈ [0, 1)”. However, this assumption is redundant: as B is
comprehensive and k < 1, then x ∈ B implies kx ∈ B, and as x� kx we have kx /∈ b(B).

5A binary relation R on X is a preorder if it is reflexive (xRx for all x ∈ X) and transitive (xRy and yRz imply
xRz); it is continuous if, for all x ∈ RK

+ , the upper and lower contour sets, {y : xRy} and {y : yRx}, are closed.
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a preorder is a natural assumption, as x is always weakly better to itself, and transitivity is a

reasonable requirement for every criterion of desirability. Finally, that � extends ≥ implies that

our dominance relation respects the “more is better” criterion.

The existence of an objective dominance relation � leads to the following definition of revealed

preferences.

Definition 1. For i, j ∈ [N ], xi is

- directly revealed preferred to xj (denoted xi %D xj) if there is y ∈ RK
+ satisfying gi(y) = 1 and

y � xj ;

- directly revealed strictly preferred to xj (xi �D xj) if there is y ∈ RK
+ satisfying gi(y) = 1 and

y � xj ;

- revealed preferred to xj , (xi %R xj) if there is a sequence of observations (m`)`∈[L], such that

xi %D xm1 %D xm2 %D . . . %D xmL %D xj ; and

- revealed strictly preferred to xj (xi �R xj) if there are observations m,m′ ∈ [N ] such that

xi %R xm �D xm
′
%R xj .

If � =≥ and every gi is of the form gi(x) = pi · x for some pi � 0, we refer to the choice

environment as the classical consumer environment. In such a setting, Definition 1 reduces to the

classical definition of revealed preferences (see Section 1 in Varian, 1982).

The intuition for the above definition is that if the agent chooses xi when y is also available, then

xi is revealed preferred to y, and if y� xj then y is (objectively) preferred to xj ; hence transitivity

implies that xi is preferred to xj . The same logic follows for the definition of strict preferences,

with the change that y� x allows us to conclude that xi is strictly preferred to xj . The definitions

of (indirectly) revealed preferences follow from the direct revealed preferences and transitivity. The

following remark shows that an equivalent definition to the directly revealed strict preferences could

follow the following logic: if xi is chosen over y and something else and y � xj , then xi is strictly

preferred to xj . The proofs of all the remarks are in Section 3.1 of the Online Appendix.

Remark 1. xi �D xj if, and only if, there is a bundle y such that gi(y) < 1 and y � xj .

Since Afriat (1967), we know that, in the classical consumer environment, observed choices are

consistent with a preference relation if and only if they satisfy the Generalized Axiom of Revealed

Preferences (GARP). GARP states that for any two i, j ∈ [N ], if xi %R xj then xj �D xi has to be

false. Nishimura et al. (2017) expand Afriat Theorem to a more general choice environment that

includes the one studied in this paper.6

We interpret failures of GARP as an indication of imperfect implementation of the agent’s

preferences. However, we do not specify the source of such limitation. Instead of dropping the

assumption that the agent has a preference relation, we assume that such preference exists, but

6As in the original result by Afriat (1967), Nishimura et al. (2017) do not state their result in terms of GARP but
in terms of cyclical consistency. Both approaches are equivalent.
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the agent’s choices are imperfectly aligned with it. In our view, this is the natural interpretation:

to interpret a failure of GARP as a sign that the agent has no unique preference relation leaves us

with no path to meaningfully analyze any finite number of observations without adopting ad-hoc

models (see Afriat, 1973; Bernheim & Rangel, 2009, for further discussions on this problem).

2.2 Preferences

The primary motivation of our problem is that choices are an imperfect implementation of the

agent’s underlying preference relation. We denote this preference by %?. In the classical consumer

environment, and assuming perfect alignment between choices and preferences,7 Mas-Colell (1977,

1978) studies the problem of asymptotically recovering preferences. He shows that the space of

preferences is, in general, too complex to pin down the agent’s preferences uniquely. However, he

shows that such exercise can be done under certain (non-testable) regularity conditions. The first

required property is continuity. Intuitively, continuity allows us to extend each strict preference

that we learn to a neighborhood of the bundles being compared.8

A crucial property that Mas-Colell (1977) imposes to recover preferences is for preferences to be

Lipschitzian, a property he describes as capturing the idea of “indifference curves fitting together

not too wildly” (p. 1411). Given a preference %, denote by P%(x) = {y : x % y} the upper contour

set of x. Also, for any sets X,Y ⊂ RK
+ define δ(X,Y ) = infx∈X,y∈Y ||x− y||; for simplicity we write

δ({x}, Y ) = δ(x, Y ). Finally, for any r ≥ 0 let Kr = {x ∈ RK
+ : (1 + r)−11 ≤ x ≤ (1 + r)1}.

Definition 2. A preference relation % is Lipschitzian if for every r > 0 there are reals H > 0 and

ε > 0 such that if x, x′, y ∈ Kr, x ∼ x′, and ||x − y|| < ε, then δ(x, P%(y)) ≤ Hδ(x′, P%(y)). A

set of preferences P0 is uniformly Lipschitzian if, for every r > 0, the preferences %∈ P0 admit

common Lipschitz constants H and ε.

Paraphrasing Rader (1972, p. 171), Lipschitzian preferences can be explained as follows.9

Suppose that a change from x to the preference level of y can be achieved with a certain minimum

magnitude (in distance) δ(x, P%(y)). Then a change from any other x′ indifferent to x can be

achieved only with movement at least some fraction H of the minimum distance necessary from x.

The important point is that the fraction does not depend on x or on how close y is to x. However,

the sensitivity of preferences to the magnitude of a change in position is always limited by the

sensitivity of preferences at any given point on the indifference set of x.

We also impose for any “reasonable” preference to agree with the objective dominance relation

�.

Definition 3. A preference % is �-monotone if x� y implies x % y and x� y implies x � y.

7This is, if xi %? x whenever gi(x) ≤ 1, for all i ∈ [N ].
8Since he focuses on linear prices, Mas-Colell (1977, 1978) also imposes for the preferences to be convex; the reason

for this is that under linear prices, an agent choosing optimally will never choose in the non-convex portion of her
preferences; hence this property cannot be tested.

9Rader (1972, Chapter 8) studies Lipschitzian preferences under the name uniformly sensitive preferences.
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We assume that the agent’s underlying preference satisfies all the previous properties.

Assumption 3. %?∈ P, where P is a uniformly Lipschitzian set of continuous and �-monotone

preferences.

We endow the space of continuous preferences with the closed convergence topology. Intuitively,

this topology tells us that if two preferences are close to each other, then comparisons of bundles

do not change abruptly between the two. Specifically, if we have bundles x and y and a preference

relation � such that x � y, then for any sequences of bundles xn → x and yn → y and sequence

of preferences %n→% (in the topology of the space of preferences) for n large enough we have

xn �n yn.10 The closed convergence topology is the standard choice to study preferences (see

Chambers et al., 2021, for a review of the literature). Under this topology, the set of continuous

binary relations is compact and metrizable (see Theorem 2 in Chapter B of Hildenbrand, 1974).

Theorem 1. P is compact.

The previous result, whose proof is in Appendix A, gives us known bounds on the space of

preferences. In particular, it assures that any convergent sequence of preferences in P will converge

to an element of P. For more details about the relevance of this property to identify the true

parameter (in this case %?), see Newey and McFadden (1994).

2.3 Data Generating Process

In order to learn about the agent’s underlying preference %?, we need to impose some regularity

between such preferences and the data; this is, we need to specify a data generating process. First,

we assume independence between observations. As mentioned before, we also assume that the

agent consumes in the upper boundary of the consumption space, i.e., that gi(xi) = 1. Let G be

the set of gauges induced by budget sets satisfying Assumption 1. We denote by O the space of

possible observations, i.e., O = {(g, x) ∈ G × RK
+ : g(x) = 1}, and by µ the probability measure

that generates observations.

Revealed preferences, specifically directly revealed preferences, are our primary sources of in-

formation. As directly revealed preferences are constructed by comparing pairs of observations, we

must focus on how pairs of observations are constructed. For this, we denote by µ2 the probability

measure induced by µ in O ×O. Our main behavioral assumption is the following.

10A complete characterization also requires that if x % y and %n→%, then there have to be sequences xn → x and
yn → y such that for n large enough xn %n yn. In terms of open sets, the closed convergence topology is the smallest
topology for which sets of the form {x, y,%: x � y} are open in the induced product topology. This characterization
is due to Kannai (1970), and Redekop (1993) shows that in most economic environments, specifically ours, it is
equivalent to the classical characterization of the topology of closed convergence. He also proposes a third equivalent
topology named the questionnaire topology. A detailed description can be found in Section 2 of Hildenbrand (1970)
and Section B.II of Hildenbrand (1974).
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Assumption 4. If A,B ⊂ RK
+ are nonempty and open such that A �? B (this is, x �? y for all

x ∈ A and y ∈ B) then

µ2
({

((g, x), (f, y)) ∈ O ×O : x ∈ A, y ∈ B, and x �D y
})

>

µ2
({

((g, x), (f, y)) ∈ O ×O : x ∈ A, y ∈ B, and y %D x
})

(1)

For expositional purposes, in the rest of the paper we will simplify the notation to write the

value µ2 of a set of pairs of observations. For example, we write (1) as

µ2
(
x ∈ A, y ∈ B, and x �D y

)
> µ2

(
x ∈ A, y ∈ B, and y %D x

)
.

Assumption 4 is a joint restriction on the distribution of prices, the agent’s choice rule, and

her underlying preference relation. It implies that it is more likely to observe correct revealed

preferences than incorrect ones. Moreover, that has to be true even when we focus only on subsets

of bundles; if not, then we would not be able to use revealed preferences to differentiate between

%? and other preferences that disagree only on how to compare these subsets of bundles.

The following result (whose proof is in Appendix B) facilitates the interpretation of Assump-

tion 4.

Proposition 1. Let µX be the marginal probability on choices.11 Assumption 4 holds if, and only

if

1. for each nonempty open set A ⊂ RK
+ , µX(A) > 0; and

2. for nonempty open sets A,B ⊂ RK
+ such that A �? B

µ2
(
x �D y

∣∣x ∈ A, y ∈ B
)
> µ2

(
y %D x

∣∣x ∈ A, y ∈ B
)
.

The first part of Proposition 1 tells us that as the number of choices increases, these choices

become dense in the space of bundles. This requirement is necessary to learn about an agent’s

preferences over all the space of alternatives through revealed preferences, as it allows us to compare

bundles in all the consumption space. As many preferences agree on how to compare everywhere

except in a subset of bundles, without this assumption, it would be impossible to differentiate

between such preferences.

The second part of Proposition 1 tells us that whenever we observe directly revealed preferences,

they are more likely to be correct than not; this is, that revealed preferences are trustworthy. The

idea of this property is that if we want to use revealed preferences as our source of information,

then we should, in expected value, trust the revealed preferences we infer. To see this, suppose

the second condition in Proposition 1 fails; then some revealed preferences give (in expected value)

incorrect information. Unless we have an a priori idea of how to differentiate between revealed

11This is, for any Y ⊂ RK
+ , µX(Y ) =

∫
G µ((g, Y ))dg.
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preferences being likely correct and those being likely incorrect (which is unclear how to obtain),

revealed preferences are not an adequate tool to infer preferences.

We also assume that observing choices that are indifferent to each other is unlikely. This

assumption ensures that the revealed preferences we infer are maintained at the limit (almost

surely); if not, two relations may be close, and yet the revealed preferences will behave differently

concerning them.

Assumption 5. For any %∈ P, observing two different choices that are indifferent is a zero

probability event, i.e., µ2 (x 6= y, x ∼ y) = 0

Assumptions 4 and 5 are common in the literature studying how to learn about an agent’s

preferences from her choices. For the case when preferences and choices are perfectly aligned, Mas-

Colell (1978) requires the first statement of Proposition 1 under a “boundary condition” property,

and Assumption 5 is implied by his definition focus on the Strong Axiom of Revealed Preferences

instead of GARP (Definition 2 in his paper); as choices and preferences are perfectly aligned, the

second condition in Proposition 1 holds as well. For the case with imperfect implementation, both

Apesteguia and Ballester (2015) and Chambers et al. (2021) require properties analogous to the

ones we require here.12

3 Measure of Rationality

We propose the following measure of distance between the observed choices in D and a preference

relation %

d(D,%) =
| �D \ � |
| �D | .

The function d(D,%) takes the set of directly revealed strict preferences �D and measures the

share of its elements that disagree with the preference relation %. This function is motivated

by the Swaps Index developed by Apesteguia and Ballester (2015) and the objective function for

the estimator in Chambers et al. (2021). The function d(·, ·) is a modified version of traditional

U-statistics (Hoeffding, 1961). To see this, note that

d(D,%) =

∑
i,j

1
{
xi �D xj

}−1∑
i,j

1
{
xi �D xj

}
1
{
xj % xi

}
where

∑
i 6=j is short notation for

∑
i∈[N ]

∑
j∈[N ]\{i}. While traditional U-statistics divide by the

number of possible combinations (in our case N2), our distance measure normalizes by the number

12Apesteguia and Ballester (2015) require
∑

a∈A f(A, a) > 0 for every menu A (stated in their Theorem 1),
analogous to the first property in Proposition 1, and their P -monotonicity, analogous to the second one; Assumption 5
is vacuously satisfied as in their paper all preferences are strict. Chambers et al. (2021) require the first property
of Proposition 1 and Assumption 5 in their Assumption 3’, and the second property of Proposition 1 by requiring
x � y =⇒ q(%;x, y) > 1/2 for their statistical choice function q.
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of revealed preferences | �D |.

We propose the following measure of decision-making quality for a given data set

∆(D) = min
%∈P

d(D,%) . (2)

Our main motivation for proposing a new measure of economic rationality is that departures

from rationality should be measured by the misalignment between an agent’s observed choices and

her underlying preference relation, not between her choices and some preference relation. The

following result, which is the main result of our paper, tells us that, as the sample size increases,

∆(D) is likely to measure the desired misalignment.13

Theorem 2. Let %N be a minimizer of (2) when the data set has N observations. Then, as

N →∞,

%N p−→ %? .

The proof of this result is in Appendix C.

3.1 Computation

Our proposed computation method relies on the following assumption.

Assumption 6. Let C be the set of all continuous and �-monotone preferences. For every %∈
argmin%∈C d(D,%) there is %′∈ P such that �D \ �=�D \ �′.

Assumption 6 tells us that obtaining a lower distance between the data set and a preference is

impossible if we drop the Lipschitzian condition on the preferences. Since the Lipschitzian property

is a property on how indifference curves that are close to each other behave with finite data, which

is always sparse, it is impossible to test this assumption.

Assumption 6 implies that our measure of distance from rationality results from a minimization

of the objective function over all continuous and �-monotone preference relations. The fact that we

do not exclude any of such relations beforehand is crucial, as the space of candidates includes all the

binary relations that are transitive and excludes all the ones that are not. Hence, any estimator’s

strict component � will be �-monotone and acyclic. This is, for any sequence {xm`}L`=1 such that

xm1 � xm2 � . . . � xmL we have xmL 6� xm1 . Acyclicality allows us to reduce the computation

of the MM Index to a vastly studied problem in computer science: the minimum feedback arc set

(MFAS) problem.

13As usual, the notation %N p−→ % means that for every ε > 0

lim
N→∞

Pr
(
ρ
(
%N ,%

)
≥ ε
)

= 0 ,

where ρ is any metric compatible with the chosen topology.
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We start by reducing our data to a directed graph (or digraph). A digraph G = (V,E) is

composed of a set of vertices V and a set of edges E ⊂ V × V , where if x, y ∈ V are two vertices

and (x, y) ∈ E is an edge. A cycle is a sequence of vertices x1, x2, . . . , xM such that (xm, xm+1) ∈ E
for all m ∈ [M − 1], and (xM , x1) ∈ E. A digraph is acyclic if it has no cycles. After associating

a positive cost to each edge, the MFAS problem is to find the minimum cost of removing edges to

make the resulting digraph acyclic.

Definition 4. Take a digraph G = (V,E) and a set of weights Ω = (ωe)e∈E , where ωe > 0 for all

e ∈ E. The minimum feedback arc set (MFAS) problem of [G,Ω] is

min
E′⊂E

∑
e∈E′

ωe, subject to (V,E \ E′) is acyclic. (3)

To reduce the computation of ∆(D) to an MFAS problem, we first reduce the choice data to a

digraph. In order to do so, we need to take into account that the dominance relation � imposes

some order in the observed data: first, � informs us about strict preferences; second, it is possible

to infer indifferences between two bundles x, y if x�y and y�x. We denote such relation as ∼�. In

order to include the potential indifferences in our data, we reduce the set of observations to one per

indifference set (according to �). Then, we assure to respect � by giving the revealed preferences

that agree with � enough weight to ensure that they will not be removed when solving the MFAS

problem.

Proposition 2. Let x = {xi :6 ∃ j < i such that xi ∼� xj}, and

�D
�= {(x, y) ∈ x× x : ∃ i, j ∈ [N ] such that xi ∼� x, xj ∼� y, xi �D xj, and xj 6�xi} .

Define the graph G = (x,�D
�) and the weights Ω = (ωv)v∈�D

�
by ω(x,y) = N2 if x� y, and ω(x,y) =∣∣{(w, z) ∈ x0 × x0 : w ∼� x, z ∼� y, and w �D z

}∣∣ otherwise, where x0 = {xi}i∈[N ] is the set of

observed choices. The preference %∈ P solves (2) if, and only if, �D
� \ � solves the MFAS problem

of [G,Ω].

The proof of the previous result, in Appendix D combines �-monotonicity and acyclicality of

strict preferences with the rationalizability characterization in Nishimura et al. (2017).

Figure 1 presents an example of how to compute (2) for a data set of three observations (N = 3)

in the classical consumer environment. Panel (a) shows the original data set. Panel (b) converts

the data set to a digraph, where choices are nodes revealed preferences are vertices (an arrow going

from x to y represents that x is directly revealed strictly preferred to y). Panel (c) introduces the

weights in the digraph; as x3 > x1 is the only relation according to ≥, the arrow from x3 to x1

has a weight of N2 = 9; all the others have weight equal to 1. Finally, panel (d) shows the graph

resulting from eliminating the cycles via the MFAS problem. By Proposition 2, we have that any

preference satisfying x3 � x2 � x1 solves (2). Finally, as two of the five vertices are eliminated by

solving the MFAS problem, we have ∆(D) = 2/5.
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(a) Original Data

x1
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(b) Induced digraph

x1

x2 x3

ω
=

1

ω
=

1

ω = 1

ω = 1

ω
=

9

(c) Digraph with weights

x1

x2 x3

(d) Solution to MFAS problem

Figure 1: Computation of ∆(D) by solving the MFAS problem (with � =≥). Panel (a) shows
original data; (b) shows digraph induced by data; (c) add weights to the digraph, where the edge
(x3, x1) has weight N2 = 9 as x3 > x1; finally (d) shows solution to MFAS problem. Proposition 2

implies that any preference % satisfying x3 � x2 � x1 solves (2), and ∆(D) = 2/5.

4 Preference Estimator

In this section, we propose an estimator of preferences based on our measure of decision-making

quality.

4.1 Rationalization

If the data satisfies GARP, a preference rationalizes the data if every observed choice is optimal

according to such preference. If that is the case, then the preference rationalizing the data will

agree with all the revealed preferences. If choices and preferences are imperfectly aligned, GARP

will not hold, and no preference relation agrees with all the revealed preferences. The starting point

of our estimator is to identify which revealed preferences we interpret as incorrect.

In our distance between a data set and a preference, d(D,%), the set �D \ � contains the

directly revealed strict preferences in �D that % disagrees with. If % is interpreted as an estimator

of the underlying preference, then the revealed preferences in �D \ � must be interpreted as

incorrect. For lack of a better word, we refer to these discarded revealed preferences as mistakes.

13



Mistakes are revealed preferences in both %D or �D with which a preference relation might

disagree. The following definition specifies the requirements for these mistakes.

Definition 5. A tuple of mistakes M is a pair (Mw,Ms), where Mw ⊂%D and Ms ⊂�D,

satisfying the following characteristics

1. xi � xj implies (xi, xj) /∈Mw and xi � xj implies (xi, xj) /∈Ms;

2. if xi %D xj and xj � xi then (xi, xj) ∈Mw, and if xi �D xj and xj � xi, then (xi, xj) ∈Ms;

and

3. if xi �D xj and (xi, xj) ∈Mw, then (xi, xj) ∈Ms.

The tuple of mistakes is a collection of mistakes Mw taken from %D, and another one, Ms,

taken from �D. The first requirement rules out the possibility of interpreting the relations derived

directly from �-monotonicity as mistakes. Similarly, the second requirement tells us that if a

revealed preference contradicts �-monotonicity, it must be interpreted as a mistake. Finally, the

third requirement states that if we interpret a x %D y as a mistake, then by definition of strict

preferences, we should also interpret x �D y as a mistake (since x � y implies x % y); in other

words, if we interpret a strict revealed preference as correct, then we should also interpret the

corresponding weak preference as correct.

Starting from the directly revealed preferences, we want to recover a preference relation that

agrees with all the revealed preferences that are not mistakes. This is our first rationalization

requirement, which we denote as “discarding only” the mistakes M.

Definition 6. Given choice data D and a tuple of mistakes M, the preference relation % discards

only M if x % y for all (x, y) ∈ (%D \Mw), and x � y for all (x, y) ∈ (�D \Ms).

Given a tuple of mistakes M, for a preference to discard only M is a natural requirement.

However, it is insufficient as a rationalization requirement as revealed preferences are only defined

between observed choices.14 Figure 2 presents a simple example of this insufficiency; even though

the preference agrees with the only revealed preference x1 �D x2, it does not rationalize the data

as none of the choices are optimal from the budget sets.

To address the limitation of discarding onlyM, we also require a preference estimator to satisfy

partial efficiency. The idea of partial efficiency is proposed by Afriat (1973), who proposes to set

a threshold e (where 0 ≤ e ≤ 1) and, with linear prices, to interpret a choice x as preferred

to another bundle y only if y’s cost is less than e times the cost of x (at the prices at which x

was chosen). A data set is e-rationalizable by a preference if such preference satisfies this new

comparison of bundles. Varian (1990) expands the previous requirement by using different levels

of partial efficiency in different observations. Specifically, he proposes to take a vector v ∈ [0, 1]N

14Usually, revealed preferences are defined between an observed choice and any bundle in the budget set from
which it is chosen. However, in Definition 1, we define them only between chosen bundles as it allows us to develop
our measure of decision-making quality (2). Furthermore, as GARP is a test that involves only observed choices,
modifying the definition does not present any practical limitation.
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x1

x2

Figure 2: A preference that agrees with the revealed preferences but does not rationalize the data.

and to interpret a choice xi as preferred to a bundle y only if its cost is less than vi (instead of one)

times the cost of xi. Then, a preference v-rationalizes the data if it agrees with all the revealed

preferences given the vector v. We extend the v-rationalization requirement to our setting, where

budget sets are not necessarily linear.

Definition 7. Given v ∈ [0, 1]N , D is v-rationalizable if there is a preference relation % such that

xi % x whenever gi(x) ≤ vi. Such preference v-rationalizes the data.

In order to include both rationalization requirements, the vector v must be small enough such

that none of the revealed preferences interpreted as mistakes are included in the sets {x : gi(x) ≤ vi}.
This requirement is achieved with the following family of vectors.

Definition 8. Given a tuple of mistakes M, an M-vector vM is any vector in [0, 1]N satisfying

the following properties

vMi < gi(xj) for all (xi, xj) ∈Mw, and (4)

vMi ≤ gi(xj) for all (xi, xj) ∈Ms. (5)

Condition (4) is motivated by the fact that if xi being preferred to xj is interpreted as a

mistake then, from the vector v, we should not infer that xi is preferred to xj ; therefore we require

gi(xj) > vi. The same logic applies to (5).

A suitable preference estimator will discard only M and vM-rationalize the data. To develop

a test for these conditions, we start by defining revealed preferences that consider the existence of

mistakes.

Definition 9. Take a tuple of mistakes M and two choices xi, xj ; xi is

- M-directly revealed preferred to xj (denoted xi %D
M xj) if (xi, xj) ∈ (%D \Mw);

- M-directly revealed strictly preferred to xj (xi �D
M xj) if (xi, xj) ∈ (�D \Ms);

- M-revealed preferred to xj (xi %R
M xj) if there is a sequence of choices (xm`)L`=1 such that

xi %D
M xm1 %D

M xm2 %D
M . . . %D

M xmL %D
M xj ; and
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- M-revealed strictly preferred to xj (xi �R
M xj) if there are choices xm, xm

′
such that xi %R

M
xm �D

M xm
′
%R
M xj .

The previous definition removes the mistakes from the classical definition of revealed preferences;

this is, it discards the revealed preferences in M.

From Afriat Theorem and its generalization by Nishimura et al. (2017), we know that ratio-

nalization by a continuous and �-monotone preference is equivalent to GARP. Here we extend the

previous definition to include the existence of mistakes.

Definition 10. Given a tuple of mistakes M, we say that choices satisfy the Generalized Axiom

of Revealed Preferences with Mistakes M (GARPM) if for any i, j ∈ [N ]

xi %R
M xj =⇒ xj 6�D

M xi .

The definitions of M-revealed preferences and GARPM are the natural extensions to generate

a (relaxed) test of consistency starting from the idea of mistakes. It is clear that the more elements

we add to the tuple of mistakes, the less restrictive the test becomes.15

The following result shows that GARPM is a necessary and sufficient test to find a preference

relation that discards only M and vM-rationalizes the data.

Theorem 3 (Afriat’s Theorem with Mistakes). There is a continuous and �-monotone preference

relation discarding onlyM and vM-rationalizing the data if, and only if, the data satisfies GARPM.

The proof of the previous theorem is in Appendix E. It is based on the generalization of the

Afriat Theorem by Nishimura et al. (2017). As usual in rationalization results, it implies that after

satisfying the comparison between observed choices, which in our case is discarding only M, the

v-rationalization requirement has no empirical content.

4.2 Preference Estimator

A basic property of any estimator is to be consistent; this is, to asymptotically recover the true

value of the underlying parameter. In the words of Newey and McFadden (1994, p. 2114),

an estimator that is not even consistent is usually considered inadequate.

From Theorem 2, we know that any estimator that solves (2) will be consistent. We propose an

estimator combining this idea with the rationalization requirements derived in the previous section.

Intuitively, we would like for an estimator to discard only a minimum tuple of mistakes M, in

the sense that if we remove elements from M then GARPM fails. Moreover, we would like for the

15This is, starting from two tuple of mistakes M = (Mw,Ms) and M0 = (Mw
0 ,Ms

0) such that Mw ⊃ Mw
0 and

Ms ⊃Ms
0, if the data satisfies GARPM0 then it satisfies GARPM.
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vM vector to be “as big as possible.” We propose to obtain a suitable tuple of mistakes through

the following algorithm.

Algorithm 1. Let M̂ = (M̂w,M̂s) be the tuple of mistakes obtained from the following algorithm:

1. Let E0 be a solution to the MFAS problem defined in Proposition 2. Set

M̂s =
{

(x, y) ∈�D: ∃ (w, z) ∈ E0 s.t. x ∼� w and y ∼� z
} ⋃ {

(x, y) ∈�D: y � x
}
.

2. Let C = (�D \M̂s)
⋃ {(x, y) ∈%D: x � y}, and M̂w

0 =%D \C. Enumerate the elements in

M̂w
0 from 1 to T = |M̂w

0 |, i.e., M̂w
0 = (mt)t∈[T ]. Starting at t = 1 and increasing t by one

until t = T perform the following computation:

2.1 Define M̃t =
(
M̂w

t−1 \ {mt},M̂s
)

.

2.2 If D satisfies GARP
M̃t

set M̂w
t = M̂w

t−1 \ {mt}; if not, set M̂w
t = M̂w

t−1.

Finally, set M̂w = M̂w
T .

The first step of the previous definition assures that any estimator arising from M̂ will be a

solution to (2), and therefore is consistent. Step 2 identifies which elements from %D should be

interpreted as mistakes. First, the set C takes all the elements from %D that we have to interpret

as correct (i.e., not as mistakes); these come from either �-dominance or from such elements being

interpreted as correct strong preferences (which imply weak preferences).16 The set M̂w
0 includes

all the elements of %D that could potentially be interpreted as mistakes; of the elements in this

set, the ones that violate � monotonicity are necessarily mistakes, but the rest (the ones in E) are

not. Hence, we evaluate the elements in E individually regarding whether they can be removed

from the set of mistakes without violating GARP.

The next results show properties of M̂ that suggest it is an adequate instrument to construct

a preference estimator. Propositions 3 and 4 show that M̂ satisfies minimum requirements for

rationalization. Proposition 5 shows that, among the tuples satisfying those requirements, the

one obtained from Algorithm 1 is minimum; this is, no element can be removed without creating

violations of GARP. The proofs these results are presented in Appendices F, G, and H, respectively.

Proposition 3. The tuple M̂ obtained from Algorithm 1 is a tuple of mistakes, i.e., it satisfies the

properties of Definition 5.

Proposition 4. Let M̂ be the tuple of mistakes obtained from Algorithm 1. D satisfies GARPM̂.

Proposition 5. Let M̂ = (M̂w,M̂s) be the tuple of mistakes obtained from Algorithm 1. For any

M = (Mw,Ms) such that Mw ⊂ M̂w and Ms ⊂ M̂s, with at least one inclusion being proper, D
fails GARPM.

We propose an estimator based on the minimum mistakes tuple. Although we would also like

to set a specific vM̂ vector for our estimator, the strict inequality in (4) implies that the biggest vM̂

16Note that conditions 3 in Definition 5 implies that for any tuple of mistakes M = (Mw,Ms), if xi �D xj and
(xi, xj) /∈Ms then (xi, xj) /∈Mw.

17



vector might not exist. Hence, we leave the choice of a specific vector open. In the Section 5, we

propose a method to choose a suitable vM̂ vector, which we use for our empirical implementation.

Definition 11. Take the minimum mistakes M̂ from Algorithm 1, and a vM̂ an M̂-vector from

Definition 8. A minimum mistakes (MM) estimator is a preference relation %M̂∈ P that vM̂-

rationalizes the data and discards only M̂.

Proposition 4 and Theorem 3 imply that our estimator discards only M̂ and vM̂-rationalizes

D, and Proposition 5 implies that the estimator presents a minimum number of disagreements

with the revealed preferences. The final result of this section (proof in Appendix I) shows that the

estimator is also consistent.

Theorem 4. Let %M̂,N be a MM estimator when D has N observations. Then as N →∞,

%M̂,N p−→ %? .

5 Empirical Implementation

In this section, we implement the MM estimator into laboratory data from several sources. We

specifically analyze how well our estimator predicts out-of-sample choices, a method popular in

the machine learning literature and proposed by Fudenberg et al. (2022) to analyze economic

models. We use the estimator derived from the Varian (1990) Index as a benchmark for comparison

(Section 1 of the Online Appendix presents a formal definition of the Varian Index), which we refer

to as the Varian estimator. The Varian Index is, within the existing measures of decision-making

quality, the better suited to recover preferences (see Section III in Halevy et al., 2018, for a detailed

discussion of this issue). We focus our analysis on the classical consumer environment with linear

budget sets (a characteristic of the data we analyze) and with the “more is better” dominance

relation (� =≥).

The main conceptual difference between the MM and the Varian estimators is their motivation.

On the one hand, the Varian estimator is motivated by partial efficiency, which, although intuitively

compelling, lacks the statistical properties usually required in the econometrics literature. On the

other hand, the main property of the MM estimator is its statistical consistency (Theorem 4).

5.1 Data Description

We analyze the choices of 5,345 subjects from previous experimental studies. They all follow the

design of Choi et al. (2007b); subjects graphically choose bundles of different goods from randomly

generated linear budget sets. We include subjects making choices in settings with two goods (which

we refer to as 2D environments) and three goods (3D environments). Our sample includes subjects

making choices in different environments: choices under risk, choices under ambiguity, and social
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choices. In choices under risk, the different goods are Arrow securities for different states of the

world, and the probability of each state is known; choices under ambiguity differ from choices

under risk only in that not all the states have known probabilities; finally, in social choices subjects

play the dictator game, choosing between own consumption and consumption of one (in 2D) or

two (in 3D) anonymous players. When possible, we also split our samples between sub-samples

representative of the general population and sub-samples including only undergraduate or graduate

students. Our sub-samples are:

- 2D-Risk-General: 1,182 subjects, taken from Choi et al. (2014). The sample is represen-

tative of the Dutch-speaking population in the Netherlands. All subjects face a symmetric

environment, where both states have probability 1/2.

- 2D-Risk-Students: 1,020 undergraduate students. 974 subjects make choices in a symmetric

environment, and the remaining 46 subjects face an asymmetric one with probabilities 2/3

and 1/3. The symmetric data is taken from Choi et al. (2007a), Zame et al. (2020), Cappelen

et al. (2021), and Dembo et al. (2021), and the asymmetric one from Choi et al. (2007a).

- 2D-Social-General: 1,698 subjects, taken from Fisman et al. (2017), Fisman et al. (2022).

Both experiments are embedded in the American Life Panel, an internet survey administered

by the RAND Corporation to adult Americans.

- 2D-Social-Students: 1,058 students, taken from Fisman et al. (2007), Fisman, Jakiela, Kariv,

and Markovits (2015), Fisman, Jakiela, and Kariv (2015), and Li et al. (2017). Subjects are

undergraduate students (Fisman et al., 2007; Fisman, Jakiela, & Kariv, 2015), Law students

(Fisman, Jakiela, Kariv, & Markovits, 2015), and medical students (Li et al., 2017).

- 3D-Risk: 168 undergraduate students, taken from Dembo et al. (2021). All three states of

the world have the same probability 1/3.

- 3D-Ambiguity: 154 undergraduate students, taken from Ahn et al. (2014). Subjects knew

that one state of the world is 1/3 but did not know the probabilities of the other two (except

that they are positive and add up to 2/3).

- 3D-Social: 65 undergraduate students, taken from Fisman et al. (2007).

All subjects make 50 choices each except the ones in the 2D-Risk-General sub-sample, who make

25 choices each.

Since the ∆(D) and the Varian Index measure different objects, they cannot be directly com-

pared. Instead, Figure 3 compares how they rank subjects who fail GARP, splitting between the

2D and the 3D samples.17 Although both measures rank most of the subjects similarly, there are

more subjects with a (relative) high value of the Varian Index and a (relative) low value of ∆(D)

than the opposite (this is, there are more subjects near the southeast end of the plot than near

the northwest one): the slope of the blue line (which represents a linear regression) is less than

one.18 The reason is that while ∆(D) only penalizes subjects by the number of violations, i.e., the

number of revealed preferences that need to be removed, the Varian Index measures its intensity

17Figure 3 of the Online Appendix presents comparisons for each sub-sample; all present the same pattern.
18The 99% confidence intervals are [.933, .960] for the 2D data and [.876, .983] for the 3D data.
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(by how much does the income needs to be reduced in order to eliminate the revealed preference).

Thus there are subjects for whom few revealed preferences need to be removed. Hence their ∆(D)

ranking is low, but the Varian Index associates a high cost to remove them.

1000 2000 3000
∆(D) ranking

500

1000

1500

2000

2500

3000

3500

V
ar

ia
n

ra
n

k
in

g

(a) 2D

50 100 150 200 250 300
∆(D) ranking

50

100

150

200

250

300

V
ar

ia
n

ra
n

k
in

g

(b) 3D

Figure 3: Ordering of subjects according to ∆(D) and Varian Index. Linear regression in blue;
gray dotted line is 45◦ line.

5.2 Out-of-sample prediction

For any finite data set, any tuple of mistakes M (such that GARPM holds) is consistent not with

one but with a set of estimators, and the same is true for the Varian estimator. Hence, we measure

the quality of the recovered preferences by their out-of-sample accuracy, i.e., by how consistent the

set of estimators is with choices that were not included in the original estimation. For this purpose,

we split each subject observations into two groups, using the first (the train data) to estimate

preferences and the second (the test data) to check whether the observed choices are consistent

with some preference derived from the estimators. This approach is based on Fudenberg et al.

(2022), who motivate it in standard machine-learning practices. We perform our analysis using

ten observations for testing and the rest for training (i.e., 40 choices for training, except for the

2D-Risk-General sub-sample, which uses 15 choices for training). In each case, choices were chosen

randomly. We start by measuring accuracy, denoted atest, as the share of choices in the test data

consistent with some preference estimator.

Since both estimators provide a set set of possible preferences, not only one, one may generate a

“tighter bound” on the set of preferences than the other. For example, suppose the set of preferences

from one estimator is always included in the set of preferences of the other. Then, the second one

will automatically have a higher accuracy than the first (in the limit case, an estimator that never

discards any preference will always have a 100% accuracy). Following Fudenberg et al. (2022), we

compare each estimator’s completeness, which is a measure that corrects accuracy by how tight
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the bounds of the estimator are. To measure completeness, we first generate 1,000 uniform random

choices from each budget set in the test data, then compute the accuracy of the random choices,

denoted arandom. Completeness is measured as

atest − arandom
1− arandom

.

As a robustness exercise, Table 2 in the Online Appendix includes the same analysis using five

observations for testing. The results are qualitatively similar for both sizes of test data.

5.2.1 Characterization

Starting from a tuple of mistakes M satisfying GARPM, we want to know whether a new obser-

vation is consistent with some preference that discards only M and vM rationalizes the data. For

this purpose, we denote the set of all such preferences by

R(M) =
{
%∈ P :% vM-rationalizes the data and discards only M

}
.

Suppose we observe a new budget set {x : g(x) ≤ 1} that satisfies Assumption 1 (this is, g is

continuous, increasing, and homogeneous of degree one). We are interested in testing whether the

choice from this budget set is consistent with some preference in R(M). We denote the set of all

such choices by CM(B):

CM(g) = {x ∈ g(x) ≤ 1 : there is %∈ R(M) for which x % y whenever g(y) ≤ 1} .

Remark 2. If D satisfies GARPM then CM(g) 6= ∅ for any budget set {x : g(x) ≤ 1} satisfying

Assumption 1.

To characterize the set CM(g), we follow the approach in Varian (1982) and define a partial

order between the new budget set and the ones observed in the data.

Definition 12. Given choice data D, a tuple of mistakes M and a budget set generated by g, we

say that g is

1. M-directly revealed preferred to gi, denoted g∼m
D

M
gi, if there is x such that g(x) = 1 and

x� xi;

2. M-directly revealed strictly preferred to gi, denoted g mD
M gi, if there is x such that g(x) = 1

and x� xi;

3. M-revealed preferred to gi, denoted gmR
M gi, if there exist an observation xj ∈ [N ] such that

g∼m
D gj and xj %R

M xi; and

4. M-revealed strictly preferred to gi, denoted g mR
M gi, if there exist an observation xj ∈ [N ]

such that either g mD
M gj and xj %R

M xi, or g∼m
D

M
gj and xj �R

M xi.
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The idea of directly revealed preferences in the previous definition is as follows. If xi is chosen

from gi and g contains a bundle that is at least as good as xi, then the agent (weakly) prefers to

choose from g rather than from gi. Similarly, if g contains a bundle that is strictly better than xi,

the agent prefers to choose from g over gi. Finally, if there is a bundle in g that is strictly better

than another choice xj and we have inferred (throughM revealed preferences) that xj is preferred

to xi, then we also infer that the agent prefers to choose from g than from gi. Following Fact 8 in

Varian (1982), we obtain the following characterization of CM.

Proposition 6. Suppose D satisfies GARPM. For any M-vector vM and budget set generated by

g, a bundle x is in the set CM(g) if, and only if, the following conditions hold:

{y : g(y) = 1 and y � x} = ∅ (6)

xi 6�x and {y : gi(y) = vMi and y � x} = ∅ whenever g∼m
R

M
gi, and (7)

xi 6�x and {y : gi(y) = vMi and y � x} = ∅ whenever g mR
M gi . (8)

Intuitively, this characterization requires the new choice not to add more violations of GARP

than the ones thatM already removed. The proof of this result is in Section 3.2 of the Supplemental

Material. Additionally, Section 1 of the Online Appendix describes how to apply the previous result

to compute out-of-sample predictions for the Varian estimator.

In the classical consumer environment (where � =≥ and gi(y) = pi · y) the characterization in

Proposition 6 gets a simpler form. If g(y) = p · y and � =≥, then the requirement in (6) can be

restated as p ·x = 1. Similarly, the requirement {y : gi(y) = vMi and y�x} = ∅ in (7) is equivalent

to pi ·x ≥ vMi , and the requirement {y : gi(y) = vMi and y�x} = ∅ in (8) is equivalent to pi ·x > vi

.

5.2.2 Results

Before checking whether choices in the test data are consistent with the estimator obtained from

the train data, we need to define the vector v for which the preference relation v-rationalizes the

test data. In the case of the MM Index, Definition 8 implies that for any tuple of mistakesM there

is a continuous of possibleM-vectors. Specifically, as (5) is a strict inequality, there is no “biggest”

M-vector. We overcome this by finding the biggest vector that satisfies (4) (which exists as this

condition is a weak inequality) and then multiplying each component of the vector that is less than

one by a factor of .999. In the case of the Varian Index, if D fails GARP, then the data is not

v-rationalizable using the vector recovered by the Varian Index (see Ugarte, 2023). We overcome

this by multiplying each component less than one of such vector by the same factor .999.

Table 1 presents the average accuracy and completeness for the MM and the Varian estimators

and the average difference between them. Accuracy results are mixed for the 2D data. There

are no significant differences between indices for the Risk - General and Social - Students sub-
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samples (the t-statistics of the differences are .50 and -1.67, respectively), the MM estimator has a

higher accuracy for the Risk - Students sub-sample (t = 7.02), and the Varian estimator has higher

accuracy for the Social - General sub-sample (t = −3.04). Furthermore, the average difference

for the complete 2D sample is not statistically significant (t = 1.64). For the 3D data, the MM

estimator presents a higher accuracy than the Varian one for all sub-samples (t-statistics are 5.55,

7.08, and 5.27 for the Risk, Ambiguity, and Social sub-samples, respectively, and 10.10 for the

complete sample).

Table 1: Out-of-sample prediction (Test: 10 choices)

Accuracy Completeness
Sample # Sub MM Varian Diff MM Varian Diff

2D

Risk - General 951
0.766 0.765 0.001 0.344 0.352 -0.008

(0.006) (0.006) (0.002) (0.015) (0.014) (0.004)

Risk - Students 762
0.814 0.790 0.025 0.619 0.608 0.011

(0.006) (0.008) (0.004) (0.012) (0.012) (0.005)

Social - General 1549
0.704 0.710 -0.006 0.438 0.457 -0.019

(0.005) (0.005) (0.002) (0.010) (0.009) (0.004)

Social - Students 709
0.794 0.798 -0.004 0.597 0.612 -0.015

(0.007) (0.007) (0.002) (0.014) (0.013) (0.005)

ALL 3971
0.756 0.754 0.002 0.478 0.489 -0.010

(0.003) (0.003) (0.001) (0.006) (0.006) (0.002)

3D

Risk 141
0.809 0.760 0.050 0.592 0.550 0.042

(0.012) (0.017) (0.009) (0.024) (0.025) (0.012)

Ambiguity 134
0.805 0.750 0.055 0.631 0.562 0.069

(0.014) (0.017) (0.008) (0.024) (0.025) (0.013)

Social 45
0.704 0.620 0.084 0.536 0.456 0.079

(0.025) (0.032) (0.016) (0.040) (0.041) (0.018)

ALL 320
0.793 0.736 0.057 0.600 0.542 0.059

(0.009) (0.012) (0.006) (0.016) (0.016) (0.008)

Out-of-sample average accuracy and completeness for each sub-sample, including only subjects who fail GARP.

standard errors in parenthesis. Diff is difference between MM Varian estimators, D is number of dimensions, and #

Sub. is number of subjects. Test data is 10 observations, and the remaining are used for training.

Completeness results are different from Accuracy ones for the 2D data: the Varian Index esti-

mator performs better in the Risk - General, Social - General, and Social - Students sub-samples

(t-statistics are -1.87, -5.43, and -2.87, respectively), while the MM estimator does better in the

Risk - Students one (t = 2.06). Overall, for the 2D data, the Varian estimator presents a higher

average completeness (t = −4.59). For the 3D data, the completeness results are similar to the

ones for accuracy: the MM estimator presents higher average completeness in all sub-samples (t-

statistics are 3.50, 5.29, and 4.33 for the Risk, Ambiguity, and Social sub-samples, respectively, and

7.25 for the complete sample).

The fact that the Varian estimator has higher average completeness for 2D data and the MM
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estimator performs better in the 3D data paints a compelling picture. One possible explanation for

this pattern is that the Varian estimator is motivated by intuitive rather than formal arguments, and

most intuitive explanations and examples are constructed on 2D data. Hence, intuitive arguments

might be more likely to work in choice environments closer to those used in such examples. On

the other hand, formal properties such as the consistency of the MM estimator (Theorem 4) do

not rely on the simplicity or intuitiveness of the choice environment. Hence, as the environment

becomes more complex, we expect formal properties to generate more suitable estimators.

6 Concluding Remarks

If a subject’s choices are an imperfect implementation of her preference, any measure of decision-

making quality should measure the distance between the subject’s choices and her preference.

Hence, measuring the distance between the observed choices and GARP might be insufficient, as

the distance is measured according to some preference but not necessarily the subject’s. In this

paper, we propose a new measure of decision-making quality that approaches the distance between

the subject’s choices and underlying preference relation as the sample size increases.

Since preferences are not directly observable, the question about measuring the distance be-

tween an agent’s choices and her underlying preference is inevitably related to learning about the

agent’s preference from her choices. We use our measure of decision-making quality to propose a

new preference estimator, which, to the best of our knowledge, is the first statistically consistent es-

timator for the choice environment we study (which includes the traditional consumer environment

as a particular case).

We implement our preference estimator on experimental data by analyzing the quality of its

out-of-sample prediction. We compare our results to the estimator derived from the Varian (1990)

Index. Our results suggest that intuitive arguments may be well-suited to recover preferences in the

simple choice environments where those arguments are motivated. However, formal properties, such

as the statistical consistency of the proposed estimator, become more relevant as the complexity of

the choice environment increases.
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A Proof of Theorem 1

In order to proof Theorem 1 we adapt results from Mas-Colell (1977).

Definition 13. A function u : RK
+ → R is Lipschitzian if, for every r > 0 there is a number M > 0

such that |f(x)− f(y)| ≤M ||x− y|| for every x, y ∈ Kr. It is �-regular if for every r > 0 there is

δ > 0 such that u(x)− u(y) ≥ δ||x− y|| whenever x, y ∈ Kr and x� y.

A set of function U is uniformly Lipschitzian if for every r > 0 the functions u ∈ U admit the

same Lipschitz constant M . It is uniformly regular if for every if for every r > 0 the functions

u ∈ U admit the same constant δ.

Mas-Colell (1977) focuses on functions that are strictly ≥-increasing. Here we adapt his def-

inition of regularity for a general dominance relation, and call it �-regular. In Theorems 1 and

1’, Mas-Colell (1977) shows the equivalence between Lipschitzian preferences and Lipschitzian and

regular utility functions. Although his focus is on ≥-increasing preferences, there is nothing in his

proof that uses the specific structure of ≥ instead of a generic dominance relation �.19 Regard-

ing the assumption of convexity of preferences, Mas-Colell (1977) uses it only in the proof of his

Lemma 4; below we provide a proof (which relies on two auxiliary results) that does not rely on

the preferences being convex. For any preference % and bundle x, let I%(x) be the indifference set

of x.

Lemma 1. If % is Lipschitzian and x � y then δ(I%(x), I%(y)) > 0.

Proof. Towards a contradiction suppose δ(I%(x), I%(y)) = 0. Take x′ ∈ I%(x) and y′ ∈ I%(y)

close enough such that ||x′ − y′|| < ε. As x ∼ x′ � y ∼ y′ we have δ(y′, P (x)) = d(y′, I(x)) > 0.

Hence H||x′′ − y′′|| ≥ δ(x′, I(y)) > 0 for all x′′ ∈ I(x) and y′′ ∈ I(y). Therefore δ(I(x), I(y)) ≥
Hδ(x′, I(y)) > 0, a contradiction.

Lemma 2. If % is continuous and x % y % z then δ(I%(x), I%(z)) ≥ δ(I%(x), I%(y))+δ(I%(y), I%(z)).

Proof. Take η > 0, x′ ∈ I(x) and z′ ∈ I(z) such that ||x′−z′|| < d(I%(x), I%(z))+η, and y′ ∈ 〈x′, z′〉
such that y′ ∈ I(y), which exists by continuity of %. Then

d(I%(x), I%(y)) + d(I%(y), I%(z)) ≤ ||x′ − y′||+ ||y′ − z′||
19In particular, the only change we need to make in his proof is to replace “x > y” for x � y in the statement of

Lemma 5.
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= ||x′ − z′||
< d(I%(x), I%(z)) + η .

The result follows as η is arbitrary.

Lemma 3 (Mas-Colell, 1977, Lemma 4). Let % be Lipschitzian and strictly increasing, r > 0, and

xn, yn ∈ Kr for all n. If xn ∼ yn and xn 6= yn for all n, then the sequence zn = ||xn−yn||−1(xn−yn)

does not have an accumulation point in RK
+ .

Proof. Towards a contradiction suppose zn has an accumulation point z in RK
+ . By construction

we have ||zn|| = 1 for all n, therefore ||z|| = 1. As z ∈ RK
+ , this implies z > 0. Since Kr is compact,

and up to subsequences if necessary, let xn → x and yn → y. Since z > 0 we have x > y, and

therefore x � y; let C = δ(I%(x), I%(y)) > 0 (Lemma 1).

We analyze three different exhaustive cases, showing that all of them are impossible.

- If x � xn � y, let wn be the unique element in the segment 〈x, y〉 satisfying wn ∼ xn. Up to a

sub sequence if necessary, let wn → w. There are two possible subcases:

◦ w = x, let z = w+y/2; then for n large enough wn � z � y. Lemma 2 implies δ(I(wn), I(y)) ≥
δ(I(wn), I(z))+δ(I(z), I(y)) > 0. Also, for all η > 0 and n large enough we have δ(I(wn), I(y)) ≤
δ(yn, I(y)) < η, a contradiction.

◦ w 6= x, let z = x+w/2; then for n large enough x � z � wn and, by Lemma 2, δ(I(x), I(wn)) ≥
δ(I(x), I(z))+δ(I(z), I(wn)) > 0. Also, for all η > 0 and n large enough we have δ(I(x), I(wn)) ≤
δ(I(x), I(xn)) < η, a contradiction.

- If xn % x � y, then, by Lemma 2, δ(I(xn), I(y)) ≥ δ(I(xn), I(x)) + d(I(x), Y (y)) ≥ C > 0. For

all n sufficiently large we have δ(I(xn), I(y)) ≤ ||yn − y|| < C, a contradiction.

- If x � y % xn, then, by Lemma 2, δ(I(x), I(xn)) ≥ δ(I(x), I(y)) + δ(I(y), I(xn)) ≥ C > 0. For

all n sufficiently large we have δ(I(xn), I(x)) ≤ ||x− xn|| < C, a contradiction.

Now we can directly adapt Theorem 1’ in Mas-Colell (1977).

Theorem 5 (Generalization of Theorem 1’ in Mas-Colell, 1977). Let Φ be the mapping that assigns

to every utility function the preference relation it represents. A set P0 of �-increasing preferences

is uniformly Lipschitzian if, and only if, there exists a set of uniformly Lipschitzian and uniformly

�-regular utility functions U0 such that Φ(U0) = P0.

Proof of Theorem 1. Let P be a uniformly Lipschitzian set of continuous and �-increasing prefe-

rences. For every preference %∈ P0 let u% be the unique utility that represents % and satisfies

u%(x) = α for every x of the form x = α1, and let U = {u% :%∈ P}. By Theorem 8 in Border and
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Segal (1994) we have %n→% if u%n → u% in the topology of compact convergence.20 By Theorem 5

the set U is uniformly Lipschitzian and uniformly �-regular, and by the Arzela-Ascoli theorem, U
is compact (see Section 6.4 in Chambers et al., 2021). Hence, by Proposition 1 in Chambers et al.

(2021), P is compact.

B Proof of Proposition 1

Proof of Proposition 1. For sufficiency suppose Assumption 4 holds.

1. Take A ⊂ RK
+ open and x ∈ A. Then the sets B = {y ∈ A : y � x} and C = {y ∈ A : x� y}

are nonempty, open, and by �-monotonicity of %? we have B �? C. Then

µX(A) ≥ µ2(x ∈ B, y ∈ C, x �D y) > µ2(x ∈ B, y ∈ C, y %D x) ≥ 0 .

The first inequality follows from B,C ⊂ A and the independence of observations, and the

strict inequality from Assumption 4.

2. Take nonempty open sets A,B ⊂ RK
+ such that A �? B. From the previous condition we have

µX(A), µX(B) > 0, and since choices are independent µ2(x ∈ A, y ∈ B) = µX(A)µX(B) > 0.

Hence

µ2(x �D y|x ∈ A, y ∈ B) =
µ2(x ∈ A, y ∈ B, and x �D y)

µ2(x ∈ A, y ∈ B)

>
µ2(x ∈ A, y ∈ B, and y %D x)

µ2(x ∈ A, y ∈ B)

= µ2(y %D x|x ∈ A, y ∈ B) .

The two equalities follow from the definition of conditional probability and the inequality

from Assumption 4.

For necessity suppose both conditions in Lemma 1 hold, and take nonempty open sets A,B ⊂
RK
+ such that A �? B. From condition 1 we have µX(A), µX(B) > 0 and from independence

µ2(x ∈ A, y ∈ B) = µX(A)µX(B) > 0. Hence

µ2(x ∈ A, y ∈ B, and x �D y) = µ2(x �D y|x ∈ A, y ∈ B)µ2(x ∈ A, y ∈ B)

> µ2(y %D x|x ∈ A, y ∈ B)µ2(x ∈ A, y ∈ B)

= µ2(x ∈ A, y ∈ B, and y %D x) .

The two equalities follow from the definition of conditional probability and the inequality from

condition 2.

20A sequence of functions fn : RK
+ → R converges to f in the topology of compact convergence if it converges

uniformly to f in every compact X ⊂ RK
+ .
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C Proof of Theorem 2

For the proofs in this section we use the function

κ(%) =
µ2(x �D x′ and x � x′)

µ2(x �D x′)
.

Lemma 4. For every data set D and preference %∈ P the function d(D,%) is continuous with

probability one.

Proof. Take choice data D, a preference %∈ P, and a sequence %m→%. Take i, j ∈ [N ]. From

Assumption 5 having two observations such that xi ∼ xj is a zero probability event. If xi � xj

then for m0 large enough we have that xj 6%m xi, and hence xi �m xj , for all m ≥ m0. Similarly if

xj � xi for m1 large enough we have xj �m xi for all m ≥ m1. Hence limm→∞ d(D,%m) = d(D,%)

with probability one.

Lemma 5. 1− d(D,%)
p−→ κ(%).

Proof. There are N2 pairs of observations over which we could potentially observe strict preference

relations (in particular, x �D x is possible). Since observations are i.i.d., it follows from Hoeffding’s

(1961) Strong Law of Large Numbers for U-statistics that |�D|/N2
a.s.−→ µ2(x �D y) + µ2(y �D x),

and |�D∩�|/N2
a.s.−→ µ2(x �D y and x � y)+µ2(y �D x and y � x). Assumption 4 implies µ2(x �D

y)+µ2(y �D x) > 0. Since 1−d(D,%) =
(
|�D|/N2

)−1 (|�D∩�|/N2
)
, the continuous mapping theorem

implies

1− d(D,%)
a.s.−→ µ2(x �D y and x � y) + µ2(y �D x and y � x)

µ2(x �D y) + µ2(y �D x)
= κ(%) .

The last equality is given by the independence between observations. Almost sure convergence

implies convergence in probability.

Lemma 6. If %∈ P and %6=%?, then κ(%?) > κ(%).

Proof. Take %6=%? (%∈ P). The denominator µ2(x �D y) of κ is independent of %, and hence

constant. Thus to maximize κ(%) we only need to maximize the numerator. Let I%(x, y) ≡
1 {x % y}. The numerator of κ(%) is

µ2(x �D y and x � y) =

∫
O×O

1
{
x �D y

}
I�(x, y)dµ2((g, x), (f, y)) .

The difference in numerators is

µ2(x �D y and x �? y)− µ2(x �D y and x � y) =

=

∫
O×O

1
{
x �D y

}
(I�?(x, y)− I�(x, y)) dµ2((g, x), (f, y))

30



=

∫
O×O

1
{
x �D y

} (
I�?\�(x, y)− I�\�?(x, y)

)
dµ2((g, x), (f, y))

≥
∫
O×O

1
{
x �D y

} (
I�?\%(x, y)− I�\�?(x, y)

)
dµ2((g, x), (f, y))

=

∫
O×O

1
{
x �D y

} (
I�?\%(x, y)− I�\%?(x, y)

)
dµ2((g, x), (f, y)) (9)

The last equality follows from Assumption 5, as I�\�? and I�\%? are equal µ2-almost surely. From

the second term within the parenthesis in (9) we have∫
O×O

1
{
x �D y

}
I�\%?(x, y)dµ2((g, x), (f, y)) =

∫
O×O

1
{
y �D x

}
I�\%?(y, x)dµ2((p, x), (q, y))

=

∫
O×O

1
{
y �D x

}
I�?\%(x, y)dµ2((g, x), (f, y)) .

The first equality interchanges the names of the observations, which is irrelevant as they are inde-

pendent. The second one uses the fact that (y, x) ∈� \ %? if and only if (x, y) ∈�? \ %. Replacing

this last expression in (9) we get

µ2(x �D y and x �? y)− µ2(x �D y and x � y) =

=

∫
O×O

I�?\%(x, y)
(
1
{
x �D y

}
− 1

{
y �D x

})
dµ2((g, x), (f, y))

≥
∫
O×O

I�?\%(x, y)
(
1
{
x �D y

}
− 1

{
y %D x

})
dµ2((g, x), (f, y)) (10)

Since % and %′ are continuous and strictly increasing the set �? \ % is open in RK
+×RK

+ (see the

proof of Lemma 7 in Chambers et al., 2021). Then there are sets of sets {Uu}u∈U and {Vv}v∈V , with

Uu, Vv ⊂ RK
+ nonempty and open, such that �? \ %=

⋃
(u,v)∈U×V Uu × Vv. Hence, it follows from

Assumption 4 that the right hand side of (10) is strictly positive. Therefore κ(%?) > κ(%).

Lemma 7. The function κ(%) is continuous on P.

Proof. As the denominator of κ(%) is independent of % we only focus on the numerator. Take

%∈ P and a sequence %n→% and (x, y) such that x 6∼ y. If x � y then for n large enough we have

x �n y, and if y � x for n large enough we have y �n x. By Assumption 5 to have x ∼ y is a zero

probability event. Since observations are independent

lim
n→∞

∫
O

∫
O

1
{
x �D y

}
1 {x �n y} dµ((g, x))dµ((f, y))

= lim
n→∞

∫
O

∫
O\{(f ′,y′):y′ 6=x, y′∼x}

1
{
x �D y

}
1 {x �n y} dµ((g, x))dµ((f, y))

=

∫
O

∫
O\{(f ′,y′)∈O:y′ 6=x, y′∼x}

1
{
x �D y

}
lim
n→∞

1 {x �n y} dµ((g, x))dµ((f, y))
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=

∫
O

∫
O\{(f ′,y′)∈O:y′ 6=x, y′∼x}

1
{
x �D y

}
1 {x � y} dµ((g, x))dµ((f, y))

=

∫
O

∫
O

1
{
x �D y

}
1 {x � y} dµ((g, x))dµ((f, y))

which is the numerator of κ. The interchange between the limit and the integration follows from

Lebesgue dominated convergence.

Proof of Theorem 2. Lemma 6 implies that 1− κ is uniquely maximized by %?. Furthermore, sine

P is compact (Theorem 1) and d→ 1−κ (Lemma 5), it follows from a slight variation of Theorem

1 in Jennrich (1969) that d converges uniformly in probability to 1 − κ. Since κ is continuous

(Lemma 7) the result follows from Theorem 2.1 in Newey and McFadden (1994).

D Proof of Proposition 2

Lemma 8. Let E? be a solution to the MFAS problem of [G,Ω] defined in Proposition 2. If x� y

then (x, y) /∈ E?.

Proof. Towards a contradiction suppose there are x, y ∈ x such that x � y and (x, y) ∈ E?.

Define Ẽ = {(x′, y′) ∈�D
� : x′ 6 �y′}. Since there are at most N2 elements in �D, (x, y) ∈�D

� ,

and (x, y) /∈ Ẽ we have
∑

e∈E? ωe ≥ ω(x,y) = N2 > |Ẽ| =
∑

e∈Ẽ ωe. As � is acyclic the graph

(x,�D
� \ Ẽ) = (x,�D

� ∩�) is acyclic; this contradicts E? being a solution to the MFAS problem of

[G,Ω].

Lemma 9. Let � = {(x, y) : y � x}. For every continuous and �-monotone preference % we have

| %D \ � | = | %D ∩ � |+∑e∈(�D
�\�) ωe.

Proof. As % is �-monotone, � ∩� = ∅; hence �D \ �= (�D ∩�)∪ ((�D \�)\ �), where �D ∩�
and (�D \�)\ � have an empty intersection. For any (x, y) ∈�D \ � for which y 6�x there are

w, z ∈ x0 such that x ∼� w, y ∼� z, and (w, z) ∈�D
� \ �. Furthermore, since % is �-monotone we

have
∣∣(�D \�)\ �

∣∣ =
∑

e∈�D
�\� ωe. As �D ∩� and (�D \�)\ � have an empty intersection, the

previous equality implies the desired result.

Proof of Proposition 2. For sufficiency, towards a contradiction suppose %∈ P is such that �D
� \ �

solves the MFAS problem of [G,Ω] but is not a solution to (2). Then there is %′∈ P such that

| �D \ �′ | < | �D \ � | which. As both % and %′ are continuous and �-monotone, Lemma 9

implies
∑

e∈(�D
�\�′) ωe <

∑
e∈(�D

�\�) ωe. Since %′ is a preference the graph (x,�D
� \(�D

� \ �′
)) = (x,�D

� ∩ �′) is acyclic. Therefore �D
� \ � does not solve the MFAS problem of [G,Ω], a

contradiction.
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For necessity suppose % is a solution of (2), and towards a contradiction assume E ⊂�D
� is a

solution to the MFAS problem of [G,Ω] and satisfies∑
e∈E

ωe <
∑

e∈(�D
�\�)

ωe . (11)

We now show that there is a continuous and �-monotone preference %′ for which �D
� ∩ �′=�D

� \E.

As � is continuous, for every x the set {y : x�y} is closed, and hence its complement {y : x 6�y}
is open. As x0 is finite and {y : x 6 �y} is open there is ε > 0 small enough such that for

any two x, y ∈ x0 such that x 6 �y we have x + ε1 6 �y. Take such ε and for each x ∈ x0

define the set Ax = {x} ⋃ {z + ε1 : (x, z) ∈ (�D
� \E)}, and let A = (Ax)x∈x. In terms of

Nishimura et al. (2017, Chapter II.C), ((RK
+ ,�),A) is a continuous choice environment.21 Let

A↓x = {z : w�z for some w ∈ Ax} be the decreasing closure of Ax with respect to �. We now show

that for any two x, y ∈ x0 if y 6= x and y ∈ A↓x then x tran(�D
� \E)y. If x 6= y and y ∈ A↓x then

one of the following is true: (i) x� y, (ii) (x, y) ∈ (�D
� \E) (since (x, y+ ε1) ∈ Ay and y+ ε1� y),

or (iii) there is z ∈ x such that (x, z) ∈ (�D
� \E) and z + ε1 � y. In (i) and (ii) is clear that

(x, y) ∈ (�D
� \E). In (iii), our choice of ε ensures z � y; if z � y we have (z, y) ∈ (�D

� \E) and

hence (x, y) ∈ tran(�D
� \E), and if y � z by the definition on x we have z = y and go back to case

(ii). In all cases we conclude that (x, y) ∈ tran(�D
� \E).

Let A�x = {z : w � z for some w ∈ Ax} be the strictly decreasing closure of Ax with respect to

�. We now show that for every x ∈ x we have x /∈ A�x . If x ∈ A�x then there is y ∈ Ax such that

y�x, which implies that y− ε1 ∈ x, (x, y− ε1) ∈ (�D
� \E), and (by the choice of ε) y− ε1�x. By

Lemma 8 we have that (y − ε1, x) ∈ (�D \E), which violates the fact that (x0,�D
� \E) is acyclic.

Finally, let the choice correspondence c : A ⇒ RK
+ be defined by c(Ax) = x for every Ax ∈ A.

Take a sequence of chosen bundles (z`)`∈[L] (z` ∈ x) satisfying z2 ∈ A↓
z1

, z3 ∈ A↓
z2

, . . ., zL ∈ A↓
zL−1 ,

and z1 ∈ A↓
zL

. The previous relations imply

z1 tran(�D
� \E) z2 tran(�D

� \E) . . . tran(�D
� \E) zL tran(�D

� \E) z1 .

If there were different elements z`
′ 6= z`

′′
in the previous equation, then z`

′
tran(�D

� \E)z`
′′

tran(�D
�

\E)z`
′

would be a cycle of (x,�D
� \E), which is impossible. Hence all the elements in (z`)`∈[L] have

to be equal. Since x /∈ A�x for every x ∈ x, we conclude that, following again the terminology of

Nishimura et al. (2017), c satisfies cyclical �-consistency.22

As c satisfies cyclical �-consistency, by Theorem 2 in Nishimura et al. (2017) there is a con-

tinuous and strictly �-increasing utility function u that rationalizes c. As for every x, y for which

21Nishimura et al. (2017) define a continuous choice environment as ((X,�) ,A), where X is a locally compact and
separable metric space; � is a continuous preorder; and A a is a collection of nonempty compact subsets of X.

22A choice correspondence c satisfies cyclical consistency if, for every sequence of observations (x`)`∈[L] (x` ∈ x),

if whenever x1 ∈ c(Ax1)∩A↓
x2 , x2 ∈ c(Ax2)∩A↓

x3 , . . ., xL−1 ∈ c(AxL−1)∩A↓
xL , and xL ∈ c(AxL)∩A↓x1, we also have

x1 ∈ A↓
x2 \A�

x2 , x2 ∈ A↓
x3 \A�

x3 , . . ., xL−1 ∈ A↓
xL \A�

xL , and xL ∈ A↓
x1 \A�

x1 .
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x
(
�D

� \E
)
y we have (x, y + ε1) ∈ Ax, then u(x) ≥ u(y + ε1), which as u is strictly �-increasing

implies u(x) > u(y). Take the preference relation %′ represented by u, which is continuous and

�-monotone, as u is continuous and strictly �-increasing. Then (�D
� \E) ⊂ (�D ∩ �′). Moreover,

as for any proper subset E′ of E the graph (x0,�D \E′) has a cycle and � does not have cycles we

have (�D \E) = (�D ∩ �′). As E ⊂�D
� , from (11) we have

∑
e∈(�D

�\�′) ωe <
∑

e∈(�D
�\�) ωe, which

by Lemma 9 implies | �D \ �′ | < | �D \ � |. Finally, by Assumption 6 there is %′′∈ P such that

| �D \ �′′ | = | �D \ �′ |, and therefore % is not a solution to (2).

E Proof of Theorem 3

Proof of Theorem 3. First suppose there is a continuous and �-monotone preference relation %

that vM-rationalizes the data and discards only M. take any two i, j ∈ [N ] such that xi %D
M xj ,

and towards a contradiction suppose xj �D
M xi. As % discards only M we have both xi % xj and

xj � xi, a contradiction.

Now suppose that the data satisfies GARPM. As � is continuous, the set {y : x� y} is closed,

and hence its complement {y : x 6�y} is open. As the data is finite and gi is continuous for all

i ∈ [N ] there is ε > 0 small enough such that for any two observed bundles xi, xj we have that (1)

xi 6�xj implies xi + ε1 6�xj and (2) gi(xj) < 1 implies gi(xj + ε1) < 1. Take such ε and for each

i ∈ [N ] define the set Ai = {xi} ⋃ {xj : xi %D
M xj} ⋃ {xj + ε1 : xi �D

M xj} ⋃ {y : gi(y) ≤ vMi },
and let A = (Ai)i∈[N ]. Then ((RK

+ ,�),A) is, following Nishimura et al. (2017), a continuous choice

environment.

We have the following two properties:

1. For any two observations i, j ∈ [N ] if xj ∈ A↓i then xi %R
M xj : If xj ∈ A↓i then one of the

following is true: (i) xi � xj , (ii) there is xm such that xi %D
M xm and xm � xj , (iii) there

is xm such that xi �D
M xm and xm + ε1 � xj , or (iv) there is x such that gi(x) ≤ vMi and

x� xj . In (i) that xi %D
M xj follows from the definition of M-revealed preferences; in (ii) we

have xm %D
M xj , hence xi %R

M xj ; in (iii) by the definition of ε we have that xm � xj , hence

xm %D
M xj and xi %R

M xj ; finally in (iv) the definition of vM implies that xi %D
M xj . In all

cases we conclude that xi %R
M xj .

2. For any two observations i, j ∈ [N ] if xj ∈ A�i then xi �R
M xj : If xj ∈ A�i then one of the

following is true: (i) xi � xj , (ii) there is xm such that xi %D
M xm and xm � xj , (iii) there is

xm such that xi �D
M xm and xm +ε1�xj , or (iv) there is x such that gi(x) ≤ vMi and x�xj .

In (i) xi �D
M xj by definition; in (ii) by xm � xj implies xm �D

M xj and hence xi �R
M xj ; in

(iii) the definition of ε implies xm �xj , hence xm %D
M xj and xi �R

M xj ; (iv) the definition of

vM implies that xi �D
M xj . In all cases we conclude xi �R

M xj .

Define the choice correspondence c : A ⇒ RK
+ by c(Ai) = xi for every i ∈ [N ], hence c(A)

is the set of chosen bundles. To show that c satisfies cyclical �-consistency suppose there is a

chain of chosen bundles (xm`)`∈[L] such that xm2 ∈ A↓m1 , xm3 ∈ A↓m2 , . . ., xmL ∈ A↓mL−1 , and
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xm1 ∈ A↓mL . Hence xm1 %R
M xm2 %R

M . . . %R
M xmL %R

M xm1 . Towards a contradiction (and without

loss of generality) suppose xm1 ∈ A�mL , which implies that xmL �R
M xm1 . Then there are chosen

bundles xs, xs
′

such that xm
L
%R
M xs �D

M xs
′
%R
M xm1 . Furthermore, the previous relation implies

xs
′
%R
M xm1 %R

M xmL %R
M xs, and hence xs

′
%R
M xs. This relation along with xs �D

M xs
′

imply

that choices fails GARPM. Hence c satisfies cyclical �-consistency.

As c satisfies cyclical �-consistency, by Theorem 2 in Nishimura et al. (2017) there is a contin-

uous and strictly �-increasing utility function u such that rationalizes c. Let % be the preference

relation represented by u. As u rationalizes c we have that xi % x whenever pi x ≤ vMi , hence %

vM-rationalizes the data. We also have that xi % xj whenever xi %D
M xj , so %⊃%D

M. Finally if

xi �D
M xj as xj + ε1 ∈ Ai we have xi % xj + ε1, which as % is �-monotone implies xi � xj . Hence

�⊃�D
M. Therefore % v-rationalizes the data and discards only M.

F Proof of Proposition 3

We follow the notation in Algorithm 1 for C, M̂s, M̂w, M̂w
0 , M̃t and M̂, and refer to properties

1, 2, and 3 following Definition 5.

Proof of Proposition 3. Suppose xi�xj , which implies xi �D xj . By Lemma 8 we have (x, y) /∈ E0

and therefore (x, y) /∈ M̂s. Similarly, if x � y then (x, y) ∈ C and (x, y) /∈ M̂w
0 . As M̂w ⊂ M̂w

0 ,

then (x, y) /∈ M̂w, and M̂ satisfies property 1.

If xi �D xj and xj � xi then (xi, xj) ∈ M̂s. If xi %D xj and xj � xi, then, xj(�D \M̂s)xi by

property 1. Suppose (xi, xj) is the tth element in M̂w
0 according to the enumeration in Algorithm 1,

so M̃t =
(
M̂w

t−1 \ {(xi, xj)},M̂s
)

. Since (xj , xj) ∈ C, we have xi %D
M̃t

xj %D
M̃t

xj �D
M̃t

xi. Therefore

GARP
M̃t

fails and, given the construction of M̂w
T , (xi, xj) ∈ M̂w

T = M̂w. We conclude that M̂
satisfies property 2.

Finally, let xi �D xj and (xi, xj) ∈ M̂w, and towards a contradiction suppose (xi, xj) /∈
M̂s. Since (xi, xj) ∈�D \M̂s ⊂ C, then (xi, xj) /∈ M̂w

0 . As M̂w ⊂ M̂w
0 , then (x, y) /∈ M̂w, a

contradiction. Therefore M̂ satisfies property 3.

G Proof of Proposition 4

We follow Algorithm 1 for the definitions of E0, C, M̂s, M̂w, M̂w
t , and M̂.

Lemma 10. %D \ M̂w
0 = C = (�D \M̂s)

⋃ {(x, y) ∈%D: x ∼� y}.

Proof. Since �D⊂%D and xi ∼� xj implies xi %D xj , we have C ⊂%D. This implies %D

\ M̂w
0 =%D \(%D \C) =%D ∩C = C. Now take (x, y) ∈%D such that x � y; Proposition 3

implies (x, y) ∈�D \M̂s, which implies the desires result.
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Lemma 11. Let G = (x,�D
�) be the digraph defined in Proposition 2, Ω the respective weights, and

E? the solution to the MFAS problem of [G,Ω]. If xi(�D \M̂s)xj ∼� xm, then there are y, z ∈ x

such that y ∼� xi, z ∼� xm, and y(�D
� \E?)z.

Proof. Follows from transitivity of ∼� and the definitions of x and M̂s.

Proof of Proposition 4. For t ∈ [T ] Let M̂t =
(
M̂w

t ,M̂s
)

. We show that D satisfies GARPM̂T
,

which is the same as GARPM̂, by induction on t.

- Let t = 0 and suppose xi %R
M̂0

xj ; then there is a sequence (xm`)`∈[L] satisfying

xi
(
%D \M̂w

0

)
xm1

(
%D \M̂w

0

)
. . .
(
%D \M̂w

0

)
xmL

(
%D \M̂w

0

)
xj . (12)

By Lemma 10, y(%D \M̂w
0 )z implies either y(�D \M̂s)z or y ∼� z, and by transitivity of ∼� it

is without loss of generality to assume that there are no two consecutive ∼� relations in (12).

Take x as defined in Proposition 2; if y(�D \M̂s)z, then there are w,w′ ∈ x such that w ∼� y,

w′ ∼� z, and w(�D
� \E0)w

′. Hence, by Lemma 11 there is a sequence (ws)s∈[S], w
s ∈ x, such

that w1 ∼� xi, wS ∼� xj , and

w1
(
�D

� \E0

)
w2
(
�D

� \E0

)
. . .
(
�D

� \E0

)
wS−1 (�D

� \E0

)
wS . (13)

Towards a contradiction, suppose xj �D
M̂0

xi. Then there are y, y′ ∈ x such that y ∼� xj,

y′ ∼� xi, and y(�D
� \E0)y

′. Since there are no two elements in x related by ∼�, it follows that

y = wS and y′ = w1; therefore wS(�D
� \E0)w

1. Along with (13), the previous relation implies

that �D
� \E0 has a cycle, a contradiction with E0 solving the MFAS problem of Proposition 2.

We conclude that D satisfies GARPM̂0
.

- Suppose GARPM̂t−1
holds. That GARPM̂t

holds follows directly from its definition.

H Proof of Proposition 5

In this section we use the notation from Algorithm 1 for the binary relations E, M̂s, M̂w, and

M̂w
t , and for the tuple of mistakes M̂, and from Proposition 2 for x and ∼D

� .

Proof of Proposition 5. First, suppose there is (xi, xj) ∈ M̂s \Ms. There are two possible cases:

- There are w, y ∈ x such that w ∼� xi, y ∼� xj , and (w, z) ∈ E0: Let E1 = E0 \ {(w, z)}. Since

E0 solves the MFAS problem in Proposition 2, �D
� \E1 has a cycle; this is, there is a sequence

(ws)s∈[S], such that

w1
(
�D

� \E1

)
w2
(
�D

� \E1

)
. . .
(
�D

� \E1

)
wS
(
�D

� \E1

)
w1 .
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SinceMs ⊂ M̂s, and following the definitions of x and �D
� , there is a sequence of observed choices

(xms)s∈[S], where xms ∼� ws for every s ∈ [S], such that xm1 �D
M xm2 �D

M . . . �D
M xmS �D xm1 .

By Definition 5, y �D
M z implies y %D

M z; hence xm1 %R
M xmS . Therefore D fails GARPM.

- xj �xi: This implies xj %R xi and, by Definition 5, xj %D
M xi. Since xi �D

M xj , D fails GARPM.

Now suppose Ms = M̂s, and there is (xi, xj) ∈ M̂w \Mw. Let (xi, xj) be the tth element of M̂w
0 .

As (xi, xj) ∈ M̂w then D fails M̃t, so there are `,m ∈ [N ] such that x` %R
M̃t

xm and xm �D
M̃t

x`.

Since Mw ⊂ M̂w ⊂ M̂w
t−1 and (xi, xj) /∈ Mw, then Mw ⊂ M̂w

t−1 \ {(xi, xj)}, which implies

x` %R
M xm. As Ms = M̂s we have xm �D

M x`, and GARPM fails.

I Proof of Theorem 4

We take the notation for [G,Ω] and �D
� from Proposition 2.

Proof of Theorem 4. By definition of M̂s (Algorithm 1), �D
� ∩M̂s = E0. Since �D

�⊂�D and �M̂
extends �D \M̂s we have �D \M̂s =�D

� ∩M̂s = E0. Therefore �D \M̂s solves the MFAS

problem of [G,Ω]. By Proposition 2 %M̂,N solves (2) and, by Theorem 2, %M̂,N p−→ %?.
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