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Abstract

Economic research usually endows consumers with a single-valued demand function.

When choices are rationalizable, this assumption can be tested by the Strong Axiom of

Revealed Preferences, SARP, as if they fail such a test, the demand is set-valued. We

extend this test to non-rationalizable choices using partial e�ciency, the most popular

method to recover preferences. Under partial e�ciency, a single-valued demand cannot

be tested; furthermore, it can always be chosen to be infinitely di↵erentiable. Hence,

the existence of a single-valued, infinitely di↵erentiable demand is falsified if, and only

if, choices are rationalizable but fail SARP, which we do not observe in laboratory

data. From an empirical standpoint, our results suggest that assuming a di↵erentiable

demand does not carry a cost.
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1 Introduction

One of the most widespread assumptions in economic research is to endow agents with

(single-valued) demand functions instead of (set-valued) correspondences. This assumption

simplifies the analysis in both theoretical and empirical research. Most results in general

equilibrium, applied game theory, and mechanism and information design rely upon this as-

sumption to keep the models tractable. Furthermore, demand functions are usually assumed

to present some level of smoothness to simplify comparative statics. Empirically, demand

estimations typically proceed by adding an error term to a parametric demand satisfying

such characteristics.

In this paper, I study the empirical content of both assuming a single-valued demand

and its di↵erentiability. I extend the classical analysis to the case when the agent’s choices

are an imperfect implementation of her preferences and therefore fail the Generalized Axiom

of Revealed Preferences (GARP). In other words, I study the possibility of using an agent’s

(possibly inconsistent) observed choices to falsify the properties of her demand. The main

result of this paper shows that if the agent fails GARP, then it is impossible to falsify the

demand being a function. Furthermore, such a function can always be chosen to be infinitely

di↵erentiable.

From Afriat (1967) and Varian (1982), we know that a consumer’s choice data can be

thought of as being a perfect implementation of a utility function if and only if it satis-

fies GARP. However, the demand derived from the utility function recovered with Afriat’s

method is neither single-valued (i.e., it is not a function) nor di↵erentiable. Matzkin and

Richter (1991) show that a demand function (instead of a correspondence) exists if, and

only if, choices satisfy Houthakker’s (1950) Strong Axiom of Revealed Preferences (SARP).

Moreover, Lee and Wong (2005) show that under SARP, we can always choose such demand

to be infinitely di↵erentiable.

I extend the analysis in Matzkin and Richter (1991) and Lee and Wong (2005) to non-

rationalizable choices, i.e., choices that fail (GARP). Our interpretation of non-rationalizable

choices is that the agent has an underlying preference but presents some form of bounded

rationality a la Simon (1955). We focus on recovering preferences using partial e�ciency

2



(Afriat, 1973; Varian, 1990; Halevy et al., 2018), the most popular method to analyze choices

that fail GARP non-parametrically. The main results show that whenever choices fail GARP,

neither the assumption of a demand function nor the di↵erentiability of such function can

be falsified.

When a consumer’s choices are suboptimal, GARP (and SARP) are insu�cient to learn

about her preferences. Halevy et al. (2018) propose a method to recover preferences under

bounded rationality. First, they show a modified version of the Afriat Theorem that inte-

grates partial e�ciency. Intuitively, partial e�ciency requires a choice to be preferred not to

every feasible alternative but only to those whose cost is a share of the consumer’s income.

Formally, take a data set of N observations, where each observation i is a price vector p
i

and a choice x
i; partial e�ciency vi 2 [0, 1] in choice i requires x

i to be preferred only to

bundles whose cost is vi p
i
x
i instead of pi xi (if vi = 1 for all the observations, then we go

back to the classical, i.e., full e�ciency, definition of GARP). Using this idea, they propose

to recover preferences by, according to a cost function, choosing the partial-e�ciency levels

that satisfy (a partial-e�ciency version of) GARP at a minimum cost.

This paper extends the work in Halevy et al. (2018) to analyze the empirical content of

a demand function in this setting. First we show that the equivalence between SARP and

a demand function does not hold under partial e�ciency. Specifically, the partial-e�ciency

version of SARP is a su�cient but not necessary condition to rationalize the data with a

utility generating a demand function. Furthermore, the same holds if the utility is required

to generate an infinitely di↵erentiable demand.

Our results show that if the data fails GARP, then, under partial e�ciency, the existence

of an infinitely di↵erentiable demand cannot be falsified. Specifically, suppose the data

fails GARP, then for any utility that rationalizes the data under partial e�ciency, there is

another one that (1) also rationalizes the choices, (2) generates a single-valued and infinitely

di↵erentiable demand, and (3) yields the same partial-e�ciency loss. Figure 1 presents

an intuitive explanation of this result. In (a), we see choice data that fails GARP: x1 is

(revealed) strictly preferred to x
2, and x

2 is (revealed) strictly preferred to x
1. To rationalize

the data, we need to add partial e�ciency to one choice, and we do it to x
2 since it requires

a smaller shrink of the budget set (the cost of x1 when x
2 is chosen is a higher share of the
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income than the cost of x2 when x
1 is chosen). In (b), we shrink the budget set of x2 such

that x1 is outside this new budget set, then the data satisfies both GARP and SARP, as x1

is revealed preferred to x
2 and x

2 is not revealed preferred to x
1. However, whenever x1 is

in the (modified) budget set of x2, even if it is in the upper boundary as in (c), the data will

fail both GARP and SARP.

x
1

x
2

(a) Data fails GARP and SARP

x
1

x
2

(b) Data satisfies (partial e�-

ciency) GARP and SARP

x
1

x
2

(c) Data fails (partial e�ciency)

GARP and SARP

Figure 1: An intuitive explanation of the main result. In (a) GARP does not hold, so we

need partial e�ciency to rationalize the data. In (b) x1 is not in the (relaxed) budget set of

x
2 and both GARP and SARP hold. If x1 is in the upper boundary of x2, as in (c), both

GARP and SARP fail.

From Afriat (1967), and Matzkin and Richter (1991), we know that if the data satisfies

GARP, the existence of a single-valued demand can be falsified through SARP. Our results

complete this test by adding that whenever the data fails GARP, it is always possible to

recover a utility function generating a demand function. Furthermore, as in the case of

(partial-e�ciency) SARP, we show that such utility can always be chosen to generate an

infinitely di↵erentiable demand. Having a complete test, we empirically analyze its existence

using experimental data from 322 individuals (50 choices each). For none of them, we can rule

out a utility generating an infinitely di↵erentiable demand function. Such a result suggests

that this widespread assumption does not carry a cost from an empirical standpoint.
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1.1 Related Literature

The idea of revealed preferences traces back to Samuelson (1938). Afriat’s (1967) seminal

paper shows that observed choices can be thought of as generated by a continuous, strictly

increasing, and concave utility if, and only if, they satisfy an easy-to-check condition called

cyclical consistency. The most famous version of this condition is GARP, proposed by Varian

(1982). Matzkin and Richter (1991) show that SARP, a test proposed by Houthakker (1950),

is equivalent to a strict concave utility, therefore generating a demand function. Lee and

Wong (2005) strengthen Matzkin and Richter’s (1991) result by showing that the same test is

su�cient for the utility to generate an infinitely di↵erentiable demand. Revealed preferences

analysis has been extended in several directions: Chiappori and Rochet (1987) and Ugarte

(2023) study the di↵erentiability of the utility function, Forges and Minelli (2009) study

non-linear budget sets, Reny (2015) studies infinite datasets, and Nishimura et al. (2017)

study general choice environments and di↵erent criteria for objectively better bundles.

The literature studying non-rationalizable choices, i.e., choices that fail GARP, starts

with Afriat (1973). He proposes to use the same level of partial e�ciency in all observations to

measure the distance from economic rationality. After him, several other measures have been

proposed noticing that di↵erent decisions can use di↵erent partial e�ciency levels (Houtman

& Maks, 1985; Varian, 1990; Echenique et al., 2011; Dean & Martin, 2016). Polisson et al.

(2020) uses the same idea to study distance from expected-utility models. Methods that

do not rely on partial e�ciency have been proposed only recently (de Clippel & Rozen,

2021; Echenique et al., 2022; Ugarte, 2022), to the point that, to the best of our knowledge,

there are no empirical papers in the revealed preference literature that does not rely on these

methods. Halevy et al. (2018) take a further step and investigate how to use partial e�ciency

to recover preferences, focusing specifically on the Varian (1990) Index. The analysis in

Halevy et al. (2018) is the starting point of this paper.

The rest of the paper proceeds as follows. Section 2 presents the problem and analyzes

conditions to recover preferences generating an infinitely di↵erentiable demand, given a par-

tial e�ciency level. Section 3 shows how to use the Varian Index to choose the level of partial

e�ciency, characterizes the test for the existence of a di↵erentiable demand function under

5



partial e�ciency, and implements this test in laboratory data. Finally, Section 4 concludes.

All proofs are in the Appendix.

2 Data Rationalization under Partial E�ciency

2.1 Setup

Consider an agent who consumes bundles of K commodities and makes N choices.1 In each

choice i 2 [N ], she faces a price vector pi 2 RK
++ and chooses a bundle x

i from the budget

set
�
x 2 RK

+ : pix  1
 

(the normalization of income to 1 is without loss of generality).

Together, prices and bundles form the data set D = (pi, xi)i2[N ], which is the primitive of

our problem. We refer to the bundles in D as choices. As standard in the revealed preference

literature, we assume that the agent spends all her income, i.e., pi xi = 1.

From Afriat (1967), Diewert (1973), and Varian (1982), we know that we can interpret the

choices in D as coming from the maximization of a locally non-satiated utility if, and only if,

D satisfies GARP. Moreover, we can choose such utility to be strictly increasing, continuous,

and concave. However, GARP does not assure the possibility of thinking of the choices

as coming from a utility that generates a demand function (instead of a correspondence).

Matzkin and Richter (1991) show that D can be rationalized by a strictly concave utility

if, and only if, it satisfies SARP. Strict concavity of the utility function implies that the

consumer’s demand is a function instead of a correspondence; this is, that for any price

vector p, there is a unique optimal bundle x
?.2,3 Taking a further step, Lee and Wong

1
We work with the following notation and terminology: N denotes the set of natural numbers and R the

set of real numbers; R+ is the set of positive numbers including zero, and R++ excludes it. For any M 2 N,

[M ] is the set of the first M natural numbers. A vector x 2 RM
is x = (x1, x2, . . . , xM ), and ||x|| is its

Euclidean norm. The vectors 0 and 1 have all their components equal to zero and one, respectively. For

any two vectors x, y 2 RM
we write x � y if xi � yi for all i 2 [M ], x > y if x � y and x 6= y, and x � y

if xi > yi for all i 2 [M ] (<, , and ⌧ are defined similarly). A function f : RM ! R is strictly increasing

[strictly decreasing] if x > y implies g(x) > [<] g(y).
2
To see this, denote the utility by U and the optimal choice by x?

. By contrapositive take x 6= x?

satisfying p x  1 and U(x) = U(x?
). Let ↵ 2 (0, 1) and x̂ = ↵x?

+ (1 � ↵)x. Then p x̂  1, and by strict

concavity U(x̂) > U(x?
). Therefore x?

is not optimal.

3
Although some utilities are not strictly concave and generate an infinitely di↵erentiable demand (like
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(2005) shows that SARP is also necessary and su�cient for the existence of a utility that

generates an infinitely di↵erentiable demand.4 A di↵erentiable demand function is a widely

used assumption in economics.

If D fails GARP, no (meaningful) utility function is consistent with the choices.5 In

this case, Halevy et al. (2018) propose to recover a utility function using partial e�ciency, a

concept proposed by Afriat (1973) and extended by Varian (1990). Partial e�ciency requires

each choice x
i to be preferred to bundles whose cost at prices p

i is only a share vi 2 [0, 1]

of the income. The collection of all such shares is the N -dimension vector v = (v1, . . . , vN),

and the revealed preferences are defined accordingly.

Definition 1. Take v 2 [0, 1]N , a choice x
i, and a bundle x 2 RK

+ . x
i is

- v-directly revealed preferred to x, denoted x
i %D

v x, if xi = x or pi x  vi;

- v-directly revealed strictly preferred to x, denoted x
i �D

v x, if pi x < vi;

- v-revealed preferred to x, denoted x
i %v x, if there exists a sequence of choices (xk`)L`=1,

k` 2 [N ], such that xi %D
v x

k1 %D
v x

k2 %D
v . . . %D

v x
kL %D

v x; and

- v-revealed strictly preferred to x, denoted x
i �v x, if there exist choices xm, xm0

such that

x
i %v x

m �D
v x

m0 %v x.

We write x
i 6%D

x
j to denote that x

i is not directly revealed preferred to x
j and use a

similar notation for the other revealed preferences.

The revealed preference relations in Definition 1 compare each choice x
i only with bun-

dles a↵ordable at prices pi and income vi 2 [0, 1], instead of the original income of 1. As vi

decreases, the bundles that we compare x
i with shrink, decreasing the possibility of inter-

preting x
i as preferred to another bundle. If v = 1, Definition 1 is equivalent to the classical

definition of revealed preferences. As with the classical definition of GARP, we are interested

in whether the data we observe can be thought of as coming from a (meaningful) utility.

the Leontie↵ utility), such cases cannot be identified under linear prices.

4
If D fails SARP, the demand is not a function but a correspondence. Thus the classical idea of di↵eren-

tiability does not apply. Although concepts analogous to di↵erentiability have been proposed for correspon-

dences (e.g., Khastan et al., 2021), they are beyond the scope of this paper.

5
A constant utility always rationalizes D.

7



Definition 2. D is v-rationalizable by the utility U : RK
+ ! R if U(xi) � U(x) whenever

p
i
x  vi; such utility v-rationalizes D. If U(xi) > U(x) whenever pi · x  1 and x 6= x

i, we

say that U strongly v-rationalizes D (and D is strongly v-rationalizable by U).

The idea of v-revealed preferences leads to the following definition of data consistency.

Definition 3. Take v 2 [0, 1]N . D satisfies the Generalized Axiom of Revealed Preferences

given v (GARPv) if for every pair of choices xi, xj

x
i %v x

j =) x
j 6�D

v x
i
.

If v = 1, Definition 2 and Definition 3 are equivalent to the classical definitions of ratio-

nalization and GARP, respectively. Hence, we refer to 1-rationalization as rationalization

GARP1 simply as GARP.

From Halevy et al. (2018), we know that Afriat’s (1967) theorem can be extended to

partial e�ciency according to v; this is, D satisfies GARPv if and only if it is v-rationalized

by a strictly increasing, continuous, and concave utility. The following section explores when

such a utility can generate an infinitely di↵erentiable demand function.

2.2 Partial E�ciency SARP

In the same spirit of Definition 3, we propose a partial e�ciency version of SARP.

Definition 4. Take v 2 [0, 1]N . D satisfies the Strong Axiom of Revealed Preferences given

v (SARPv) if for every two choices xi
, x

j, whenever xi 6= x
j

x
i %v x

j =) x
j 6%D

v x
i

Again, SARP1 is equivalent to Houthakker’s (1950) axiom, and hence we refer to it as

SARP. The following remark shows that although SARPv only compares di↵erent bundles,

it does not present inconsistencies regarding two observations with the same choice.

Remark 1. If D satisfies SARPv and x
i = x

j, then x
i 6�v x

j.

The proofs of the remarks are in Appendix A. A smaller vector v implies that we in-

terpret each choice as preferred only to cheaper bundles, which reduces the set of revealed
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preferences. Consequently, the requirements for SARPv are relaxed as v decreases. In the

limit case v = 0, the requirements disappear.

Remark 2. Let v0  v. If D satisfies SARPv then it satisfies SARPv0 .

Remark 3. D satisfies SARP0.

Surprisingly, the equivalence between SARP and rationalization by a strictly concave

utility does not hold under partial e�ciency. Specifically, a strictly concave utility could

v-rationalize a data set that fails SARPv. This is shown in Example 1 and Figure 2. Fur-

thermore, the utility presented in this example generates an infinitely di↵erentiable demand.

Example 1. Suppose K = N = 2, p1 = (1/2, 1/4), x1 = (9/5, 2/5), p2 = (1/4, 1/2), and x
2 =

(2/5, 9/5). Take v = (13/20, 13/20), and U(x) =
p

(1 + x1)(1 + x2). As x1 %v x
2 %D

v x
1, D fails

SARP. However, U is strictly concave and strongly v-rationalizes D.

x
1

x
2

Figure 2: Example 1. D fails SARPv but is v-rationalized by a strictly concave utility.

The intuition for why SARPv is not necessary for the existence of a demand function

can be better understood starting with why failing SARP implies that there is no strictly

concave utility rationalizing D. If D fails SARP but satisfies GARP there are i, j such that

x
i 6= x

j, xi %1 x
j, xj %D

1 x
i, and x

j 6�D
1 x

i. This implies p
j
x
i = 1. According to the

revealed preference relation, the decision maker is indi↵erent between x
i and x

j. But as

p
j
x
j = p

j
x
i = 1, then for ↵ 2 (0, 1) the bundle x

? = ↵x
i + (1 � ↵)xj satisfies pjx? = 1. To

rationalize the data by a strictly concave U is impossible as it implies U(x?) > U(xj). Hence

U cannot be strictly concave, and the demand has to be a correspondence. Instead, when

v < 1, SARPv fails, and GARPv holds, we have x
i %v x

j and p
j
x
i = vj. If vj < 1, then x

?
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does not satisfy p
j
x
?  vj for any ↵ 2 (0, 1); this is, x? is not a↵ordable at prices pj if the

income share of observation j is less than one. Therefore we cannot rule out v-rationalization

by a strictly concave utility.

The following result shows that, although not necessary, SARPv is a su�cient condition

for v-rationalization by a strictly concave utility. As in the classic case, rationalization is

strong.

Theorem 1. If D satisfies SARPv, then it is strongly v-rationalizable by a continuous,

strictly increasing, and strictly concave utility.

The proof of this result is in Appendix B. It follows the original proof of Matzkin and

Richter (1991). As in their paper, it starts by showing the existence of a modified version of

Afriat numbers (Lemma 2).6 Then we use these numbers to construct a continuous, strictly

increasing, and strictly concave utility that strongly v-rationalizes the data.

Although the utility function constructed in the proof of Theorem 1 generates a demand

function, such a demand is not necessarily di↵erentiable. The following result extends the

result in Lee and Wong (2005) and shows that SARPv assures the existence o a utility

function that generates an infinitely di↵erentiable demand.

Proposition 1. The utility function in Theorem 1 can be chosen to generate an infinitely

di↵erentiable demand.

The proof of the previous result is in Appendix C. It starts from the utility function in

Theorem 1 and then constructs an auxiliary data set which is (1-)rationalized by the same

utility. Then, following the proof in Lee and Wong (2005), it generates a second utility

that shares the properties of U but generates an infinitely di↵erentiable demand. Finally,

from the equivalence on how both utilities compare choices in the auxiliary data set, we can

conclude that the second utility strongly v-ratinalizes D. In the Online Appendix, we show

that if we impose partial e�ciency in all observations (v ⌧ 1), we can further strengthen

the result by generating an infinitely di↵erentiable utility.

6
We show that there are numbers ui 2 R and �i > 0 such that ui

= uj
whenever xi

= xj
and ui >

uj
+ �i

(vi � pixj
) whenever xi 6= xj

.
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The following section focuses on choosing a criterion to pick the level of partial e�ciency,

i.e., how to select the vector v, and whether we can distinguish between GARPv and SARPv

with such criterion.

3 Testing Di↵erentiable Demands

3.1 Choosing a partial e�ciency level

When D fails GARP, we can think of the decision maker as choosing according to a mean-

ingful utility only if we allow for partial e�ciency. However, for any data set, there is a

continuum of vectors v for which it satisfies GARPv, and since there is not a clear order

between vectors in [0, 1]N , we need a criterion to choose a specific v. Varian (1990) proposes

to use a vector v that is as close as possible to 1 in some norm, using the quadratic norm as

an example. Halevy et al. (2018) formalizes this notion using an aggregator function f(v).

The only requirements that we impose on f(v) are to favor bigger vectors over smaller ones

(to be strictly decreasing) and for its value to be similar when two vectors are close (to be

continuous). We also normalize it such that f(1) = 0 and f(0) = 1.

Definition 5. Let f : [0, 1]N ! [0, 1] be a continuous and strictly decreasing function

satisfying f(1) = 0 and f(0) = 1. The Varian Ine�ciency Index V (D) is

V (D) = inf
{v2[0,1]N :D satisfies GARPv}

f(v) . (1)

We refer to the Varian Ine�ciency Index as the Varian Index and to f as the loss function.

The Varian Index is not the only possible criterion for choosing the level of partial ef-

ficiency; however, as discussed in Halevy et al. (2018), it is the most suitable for it. Both

Afriat’s (1973) Critical Cost E�ciency Index (CCEI) and the Houtman and Maks (1985)

Index (HM Index) can be thought of as special cases of the Varian Index.7 Moreover, both

7
Afriat’s (1973) CCEI imposes for all the components of the vector v to have the same value. Houtman

and Maks (1985) impose that each component has to be either zero or one. The CCEI remains the most

popular in the literature, mostly because the Varian Index is computationally more demanding: Smeulders

et al. (2014) show that it is NP-Hard. Recently, Demuynck and Rehbeck (2021) developed mixed-integer
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these indices will result in lower e�ciency, i.e., a lower v, and hence a higher loss. An-

other alternative is the Minimum Cost Index (MCI) (Dean & Martin, 2016). However, the

MCI counts twice the loss of shrinking one budget set if shrinking it opens two violations of

GARP; furthermore, when it counts each loss only once, it reduces to a particular case of

the Varian Index. Finally, the Money Pump Index (Echenique et al., 2011) takes the average

level of partial e�ciency needed to satisfy GARP instead of the minimum level; hence it is

not a criterion to choose the vector v.

3.2 Preference Recoverability

Our main question is how to use the Varian Index to recover a utility that we can interpret

as driving the choices (under partial e�ciency) and whether the such utility can generate a

di↵erentiable demand. For example, such a utility can be used to understand the costs of

parametric assumptions (Halevy et al., 2018; Zrill, 2021), to measure welfare, and to obtain

information for normative criteria in individual decision-making (Kariv & Silverman, 2013).

We start by analyzing the additional loss of imposing SARP under partial e�ciency. We

find that there is no loss at all. If we modify the Varian Index and ask D to satisfy SARPv

instead of GARPv, it does not change the value of the index.

Proposition 2.

V (D) = inf
{v2[0,1]N :D satisfies SARPv}

f(v) .

Given the definition of the Varian Index and Proposition 2, the natural approach to

recover preferences would be first to find v satisfying f(v) = V (D) (which exists by the

intermediate value theorem) and then to analyze the utilities that v-rationalize D. However,

as the Varian Index is an infimum, it might be the case that there is no v for which V (D) =

f(v) and D satisfies GARPv. The following result shows that the latter is the case.

Proposition 3. If D fails GARP, then for any v satisfying f(v) = V (D) it also fails

GARPv (and hence SARPv).

linear programming methods to compute the Varian Index and the HM Index and showed that the indices

can be quickly computed for datasets regularly collected in experiments.
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Figure 1 shows a simple example that illustrates Proposition 3. In this case we have

x
1 �D

1 x
2 and x

2 �D
1 x

1, which is a violation of SARP and GARP. Assume without loss that

f((1, p2x1)) < f((p1x2
, 1)), i.e., that it is less costly to shrink the budget set of the second

observation. As for every " > 0 small enough we have that x
2 6%(1,p2x1�") x

1, D satisfies

GARP(1,p2x1�"). Hence V (D) = f((1, p2x1)). Finally, for " = 0 we have x
1 �D

(1,p2x1) x
2 and

x
2 %D

(1,p2x1) x
1, hence GARP(1,p2x1) fails.

Even though a partial e�ciency vector v? satisfying f(v?) = V (D) cannot recover pref-

erences, they can be recovered using a vector v that, although smaller than v?, is arbitrarily

close to it. Our main result, Theorem 2, (which is a direct consequence of Proposition 2 and

Proposition 3) shows that the same can be done for SARP.

Theorem 2. For every v < 1 such that D satisfies GARPv, there is v? such that f(v?) =

f(v) and D satisfies SARPv?.

Theorem 2 implies that, if D fails GARP, then for every vector v for which it is v-

rationalizable there is another vector v? that yields the same cost as v, and for which we

can find a utility function that v? rationalizes D and generates an infinitely di↵erentiable

demand. This result fully characterizes the test to falsify the existence of a demand function

instead of a correspondence, and the di↵erentiability of such demand, using partial e�ciency.

Specifically, it implies that whenever D fails GARP, it is impossible to test for these char-

acteristics. Thus, such a demand can be falsified only in a particular case: D has to satisfy

GARP but not SARP.

3.3 Empirical Implementation

The final question we address is how usual it is to be able to falsify a di↵erentiable demand.

Theoretically, the answer to this question will depend on the data-generating process (DGP)

of the price vectors that generate the budget sets and the DGPs generating the choice in

each budget set. For example, for any data set in which the budget sets are all di↵erent,

and the choice in each budget set is a continuous random variable, we know that to have

two di↵erent observations i, j such that pi xj = 1 is a zero probability event. Hence (almost

surely), any data set satisfying GARP will also satisfy SARP, so convexity cannot be tested.

13



We empirically analyze the possibility of falsifying the existence of a di↵erentiable demand

function using experimental data from 322 subjects, coming from the experiments in Ahn

et al. (2014) and Dembo et al. (2021). Each subject makes 50 di↵erent choices under the

design of Choi et al. (2007): they face a budget set to choose Arrow securities for three states

of the world. We study choices with three states (K = 3) because it is impossible to identify

GARP from SARP if there are only two states and all prices di↵er.8,9 In each choice, the

computer randomly selects a budget set satisfying that all components of the price vector

are greater than 1/100 (all intercepts lie between 0 and 100). At least one of them is less than

1/50 (one intercept is greater than 50). Of the total sample, the 168 subjects from Dembo

et al. (2021) knew that all the states had equal probability. The 154 subjects from Ahn

et al. (2014) knew that one state had probability 1/3 but did not know the probabilities of

the other two (besides the fact that they added to 2/3). At the end of the experiment, the

computer randomly chose one choice and one state of the world, and the subject received

payment according to the securities she bought.

The main finding of our analysis is that no subject satisfies GARP and fails SARP. Hence

we cannot rule out the existence of a demand function, neither an infinitely di↵erentiable one,

for any of them. The specificity of the case in which these properties can be tested, along with

the fact that we do not observe it in the data, suggest that (under partial e�ciency)moving

from a demand correspondence to an infinitely di↵erentiable demand function does not carry

a cost. We interpret this as a strong signal that assuming infinitely di↵erentiable demand

functions should not be a concern in applied economic research.

4 Final Remarks

One of the most widespread assumptions in economic research, both theoretical and empir-

ical, is that consumers’ preferences can be described by a utility function that generates a

single-valued demand function instead of a correspondence. Furthermore, such demand is

usually assumed to have some degree of smoothness to facilitate comparative statics. In this

8
If K = 2 and two observations i, j 2 [N ] are such that pi 6= pj and pi xj

= 1, then xi
= xj

.

9
Dembo et al. (2021) discuss other advantages of experiments with three instead of two states.
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paper, we study the possibility of empirically testing such assumptions, focusing on cases

when the observed choices are not perfectly aligned with the agent’s underlying preferences.

From Afriat (1967), Matzkin and Richter (1991), and Lee and Wong (2005), we know

that for rationalizable choices, i.e., choices that satisfy GARP, SARP is the test for the

existence of a demand function. If the data fails SARP, any utility rationalizing the data

will generate only a demand correspondence; if the data satisfies SARP, then there is a utility

that rationalizes the data and generates a demand that is a function and, moreover, infinitely

di↵erentiable. We expand this analysis by recovering preferences through partial e�ciency,

the most popular tool to analyze choices that fail GARP. We do so by first analyzing SARP

under partial e�ciency. We find that, although not necessary, partial e�ciency SARP is

su�cient for a di↵erentiable demand.

Our main result shows that if choices fail GARP, it is impossible to di↵erentiate between

a demand correspondence and an infinitely di↵erentiable demand function. Using partial

e�ciency, we can always choose a rationalizing utility that generates a single-valued and

di↵erentiable demand. We test the existence of such properties in experimental data and

find that they cannot be falsified in any of the 322 subjects analyzed. We interpret this

as evidence that the widely used assumption of an infinitely di↵erentiable demand function

demand does not carry an empirical cost.
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APPENDIX

A Remarks

Proof of Remark 1. By contrapositive suppose x
i �v x

j. Then there are m,m
0 such that

x
i %v x

m �D
v x

m0 %v x
j. As pmxm = 1 and vm  1, then x

m 6= x
m0
. Furthermore, xi = x

j
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implies xj %D
v x

i, thus xm0 %v x
m, a violation of SARPv.

Proof of Remark 2. As v0  v, xi %D
v0 x implies xi %D

v x . Hence x
i %v0 x implies xi %v x.

Suppose SARPv holds and x
i %v0 x

j. Then x
i %v x

j, which by SARPv implies x
j 6%D

v x
i.

Hence x
j 6%D

v0 x
i and SARPv0 holds.

Proof of Remark 3. p
i
x
i = 1 implies x

i
> 0; hence, as p

j � 0, we have p
j
x
i
> 0 = vj.

Therefore x
i 6= x

j implies xi 6%D
v x

j and SARP0 holds vacuously.

B Proof of Theorem 1

Lemma 1. If D satisfies SARPv there exist i 2 [N ] such that pixj
> vi for all xj 6= x

i.

Proof. By counterpositive suppose that for every i there is x
j 6= x

i satisfying p
i
x
j  v

i.

Then there is an infinite sequence (xj`)1`=1 such that xj` 6= x
j`+1 and x

j` %D
v x

j`+1 for all `.

As N < 1 there is m 2 [N ] and `, `
0 2 N such that xm = x

j` = x
j`0 and `

0 � ` + 2. Thus

x
m %D

v x
`+1 and x

`+1 %v x
`0 = x

m. Therefore SARPv fails.

Lemma 2. If D satisfies SARPv then there exist numbers u
i 2 R and �

i
> 0 for i 2 [N ]

such that for all i, j 2 [N ]

u
i
> u

j + �
i(vi � p

i
x
j) whenever x

i 6= x
j; and

u
i = u

j whenever x
i = x

j
.

(2)

Proof. We proceed by induction on N . If N = 1, it is clear that u1 = �
1 = 1 satisfy (2).

Suppose (2) holds for all data sets withN�1 or less observations. Takem 2 [N ] satisfying

p
m
x
i
> vm whenever x

i 6= x
m (which exists by Lemma 1), and define O = [N ] \ {m}. By

induction hypothesis there are numbers ui 2 R and �
i
> 0 such that (2) holds for all i, j 2 O.

Define B = {i 2 O : xi 6= x
m} and E = O \B.

- If B = ; set ui = �
i = 1 for all i 2 [N ]. Clearly (2) holds for D.

- If B 6= ;, set um = mini2B u
i+�

i(pixm� vi)� " if E = ;, and if E 6= ;, take ` 2 E and set

u
m = u

`. In both cases ui
> u

m + �
i(vi � p

i
x
m) whenever i 2 B, and u

m = u
i whenever

i 2 E.

18



Set

�
N = max

⇢
max
i2B

u
i � u

N + "

pNxi � vN
; 1

�
.

Then �
N � 1 > 0 and u

N
> u

i + �
N(vN � p

N
x
i) for all i 2 B (since p

N
x
i � vN > 0).

Therefore (2) holds for D.

Proof of Theorem 1. Set M > 0, and define g(x) = (M + ||x||2)1/2 � M
1/2. As D satisfies

SARPv there are numbers ui 2 R and �
i
> 0 such that (2) holds (Lemma 2). Furthermore,

as �i
p
i
k > 0 there is " > 0 such that

u
i � "g(xi � x

j) > u
j + �

i(vi � p
i
x
j) whenever xi 6= x

j; and (3)

�
i
p
i
k > " for all i 2 [N ], k 2 [K] . (4)

Let

�
i(x) = u

i � �
i(vi � p

i
x)� "g(x� x

i) for each i 2 [N ], and

U(x) = min
i2[N ]

�
i(x) .

Since each �
i is continuous, strictly concave, and strictly increasing, U(x) inherits these

properties.10

Let m be a minimizer of U(xi). If xi = x
m then u

i = u
m and

U(xi) = u
m � �

m(vm � p
m
x
i)� "g(xi � x

m) = u
i � �

m(vm � p
m
x
m) � u

i
.

The second equality follows from g(0) = 0 and the inequality from p
m
x
m � vm and �

m
> 0.

If xm 6= x
i from (3) we have

U(xi) = u
m � �

m(vm � p
m
x
i)� "g(xi � x

m) > u
i
.

Hence U(xi) � u
i.

10�i
(·) is strictly increasing since, from (4), for all k 2 [K]

@�i
(x)

@xk
= �ipik � "

 
(xk)

2

M +
P

k2[K](xk)
2

!
> �ipik � " > 0 .
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Take x 6= x
i such that pi x  vi. Then

U(x) = min
j2[N ]

u
j � �

j(vj � p
j
x)� "g(x� x

j)

 u
i � �

i(vi � p
i
x)� "g(x� x

i) (since i 2 [N ])

 u
i � "g(x� x

i) (since �
i
> 0 and p

i
x  vi)

< u
i (since " > 0 and x 6= x

i)

 U(xi) (since U(xi) � u
i).

Therefore U strongly v-rationalizes D.

C Proof of Proposition 1

Lemma 3. Let U be a continuous, strictly concave, and strictly increasing utility generating

a demand m : RK
++ ⇥ R++ ! RK

+ . For every x 2 RK
+ \ {0} there is p � 0 such that

m(p, 1) = x.

Proof. Take x 2 RK
+ \ {0}. Since U is strictly concave it has a supergradient b at x; this

is, U(x) > U(y) + b(x � y) whenever y 6= x. We first show, by contradiction, that b � 0.

Suppose bk  0 for some k 2 [K], denote by e
k the vector with k

th component equal to one

and all the others equal to zero, and set y = x+ e
k
> x. As U is strictly increasing

U(y) + b(x� y) = U(y)� b e
k = U(y)� bk � U(y) > U(x) ,

a contradiction.

Define p = (b x)�1
b � 0. Then p x = 1. Moreover, y 6= x and p y  1 imply U(x) > U(y)

(since b x  b y). Therefore x = m(p, 1).

Proof of Proposition 1. Suppose D satisfies SARPv and let U be a continuous, strictly con-

cave, and strictly increasing utility v-rationalizing D (Theorem 1). Let m(p, e) be the de-

mand function generated by U . By strong v-rationalization, for every i 2 [N ] we have

U(xi) � U(m(pi, vi)), with strict inequality if vi < 1. Construct the data set eD = (epj, exj)j2[J ]

as follows: for every i in [N ]

- If vi = 1, add an observation (epj, exj) = (pi, xj).
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- If vi < 1, add two observations (epj, exj) and (epj0 , exj0), where:

- epj = p
i, exj = m(pi, vi), and

- exj0 = x
i, epj0 = p for some p such that m(p, 1) = x

i, which exists by Lemma 3.

By construction eD is strongly 1-rationalized by U , hence it satisfies SARP. By Lee and

Wong (2005) there is an strictly increasing, strictly concave eU that strongly 1-rationalizes

eD and generates an infinitely di↵erentiable demand. Furthermore, from their proof we can

choose eU agreeing with U on how to compare choices in eD, i.e.,

eU(xi) � eU(xj) () U(xi) � U(xj) whenever i, j 2 [J ]

Finally, take any i 2 [N ].

- If vi = 1 then there is j 2 [J ] such that (epj, exj) = (pi, xi). By strong rationalization of eD

we have that eU(xi) > eU(x) whenever pi x  vi and x 6= x
i.

- If vi < 1 then there are j, j0 2 [J ] such that epj = p
i, exj = m(pi, vi), exj0 = x

i, andm(epj0 , 1) =

x
i. As vi < 1, strong rationalization of D by U implies U(xi) > U(m(pi, vi)) = U(exj).

Moreover, as eU and U agree on how to rank choices in eD, we have eU(xi) > eU(exj). Strong

rationalization of eD by eU implies that eU(xi) > eU(exj) � eU(x) whenever pi x  vi.

Therefore eU strongly v-rationalizes D.

D Proof of Proposition 2

Lemma 4. If GARPv holds then there is a sequence (vn)n2N such that

1. vn  vn+1 for all n;

2. vn ! v; and

3. D satisfies SARPvn for all n.

Proof. Suppose GARPv holds, and let C = {(i, j) 2 [N ]⇥[N ] : xi 6= x
j
, x

i %v x
j, and x

j %D
v

x
i}. As D satisfies GARPv, then (i, j) 2 C implies xj 6�D

v x
i, thus vj = p

j
x
i
> 0. Define vn

by

v
n
j =

8
><

>:

n
n+1vj if (i, j) 2 C for some i 2 [N ]

vj otherwise.
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Then vn  vn+1 for all n, and vn ! v. Moreover, if (i, j) 2 C then v
n
j < vj.

Finally, suppose x
i 6= x

j and x
i %vn x

j. If (i, j) /2 C then x
j 6%D

v x
i, and p

j
x
i
> vj � v

n
j .

If (i, j) 2 C then p
j
x
i = vi > v

n
i . Hence x

j 6%D
vn x

i, therefore D satisfies SARPvn .

Proof of Proposition 2. As SARPv is stronger than GARPv,

inf
{v2[0,1]N :D satisfies SARPv}

f(v) � V (D) . (5)

By definition of V (D) there is a sequence vn ! v? such that GARPvn holds for all n and

f(v?) = V (D). By Lemma 4, for each n there is a sequence (bn,i)i2N such that bn,i ! vn

and D satisfies SARPbn,i for every i, n 2 N. Set " > 0 and for each n take j(n) such that

||vn �bn,j(n)|| < "/n. Define the sequence (cn)n2N by cn = bn,j(n). Then D satisfies SARPcn

for all n and cn ! v?. Continuity of f implies f(cn) ! f(v?), thus

inf
{v2[0,1]N :D satisfies SARPv}

f(v)  f(v?) = V (D) . (6)

(5) and (6) imply the desired result.

E Proposition 3

This proof uses a criteria of almost data consistency developed by Polisson et al. (2020,

Appendix A9.1).

Definition 6. For v 2 [0, 1]N , D almost satisfies GARPv (i.e., it satisfies aGARPv) if there

is a sequence (vn)n2N such that

1. vn  v;

2. vn ! v; and

3. D satisfies GARPvn for all n 2 N.

Lemma 5. D satisfies aGARPv if, and only if, when restricted to the choices in D, �D
v is

acyclic.

Proof. See Polisson et al. (2020, Appendix A9.1).

Lemma 6. If D satisfies aGARPv, then V (D)  f(v).
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Proof. It follows from the definitions of V (D) and aGARPv.

Proof of Proposition 3. Suppose GARP fails and take v such that f(v) = V (D). If D fails

aGARPv then it also fails GARPv. If it satisfies aGARPv then

- If v = 1 then GARPv fails by assumption.

- If v < 1 then there is i such that vi < 1; define A = {j 2 [N ] : xj �v x
i}. Towards

a contradiction suppose GARPv holds. Then p
i
x
j
> vi for all j 2 A.11 As A is finite

there is " > 0 such that pixj
> vi + " for all j 2 A. Define v0 2 [0, 1]N by

v
0
n =

8
><

>:

vi + " if n = i

vn otherwise.

When restricted to choices in D, �D
v =�D

v0 . By Lemma 5, aGARPv implies that �D
v

restricted to choices is acyclic, hence �D
v0 also is and aGARPv0 holds. But v0

> v

implies f(v0) < f(v) = V (D), which contradicts Lemma 6.

As D fails GARPv, it also fails SARPv.

Theorem 2

Proof. As v < 1 and GARPv holds, Proposition 3 implies f(v) < V (D). By Proposition 2

there is (vn)n2N such that SARPvn holds for all n, and f(vn) ! V (D). Thus f(vn0) � f(v)

for n0 large enough. As f is continuous and strictly decreasing, there is v?  vn0 such that

f(v?) = f(v). Remark 2 implies that D satisfies SARPv? .

11
If not, then xi %D

v xj
. As xj �v xi

there are m,m0
such that xj %v xm �D

v xm0 %v xi
. Then xm0 %v xm

and xm �D
v xm0

, and GARPv fails.
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